Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Active Mass Absorber” at a 4×4 Transmition System

2003-11-18
2003-01-3682
The extensive use of rotative machines in the diverse branches of the modern world has made the rising undesirable mechanical and acoustic vibration levels to be a problem of special importance for the machines normal operation as for the communities that are each time more affected by the problem. It makes the study of vibration and acoustic phenomena also to be even more important and the applications of its concepts more sophisticated. Several are the concepts used for decreasing vibration levels, like common dampers, hydraulic dampers, active dampers, natural frequencies changes and others. The choice of use of one or another depends greatly on the engineering possibilities (weight, energy, physical space, other components functional interference, vibration levels, etc.) as well as the cost of implementation of each one.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Technical Paper

Up-Front Body Structural Designs for Squeak and Rattle Prevention

2003-05-05
2003-01-1523
Squeak and rattle is one of the major concerns in vehicle design for customer satisfaction. Traditionally squeak and rattle problems are found and fixed at a very late design stage due to lack of up-front CAE prevention and prediction tools. A research work at Ford reveals a correlation between the squeak and rattle performance and diagonal distortions at body closure openings and fastener accelerations in an instrument panel. These findings make it possible to assess squeak and rattle performance implications between different body designs using body-in-prime (B-I-P) and vehicle low frequency noise, vibration and harshness (NVH) CAE models at a very early design stage. This paper is concerned with applications of this squeak and rattle assessment method for up-front body designs prior to a prototype stage.
Journal Article

Uncertainty Analysis of Model Based Diesel Particulate Filter Diagnostics

2008-10-07
2008-01-2648
This paper analyzes the potential benefit of a model based DPF leakage monitor over a conventional DPF leakage monitor that checks pressure drop after a complete regeneration. We analyze the most important noise factors involved in both approaches and demonstrate that the model based leakage monitor does not improve on the conventional leakage monitor in accuracy. It does improve on completion frequency, but at the expense of a great modeling effort.
Journal Article

Twin-LNT System for Advanced Diesel Exhaust Gas Aftertreatment

2017-03-28
2017-01-0935
The most significant challenge in emission control for compression ignited internal combustion engines is the suppression of NOx. In the US, NOx-levels have faced a progressive reduction for several years, but recently the introduction of the Real Driving Emissions legislation (RDE) in Europe has not only significantly increased the severity of the required emission reduction but now is in the advent of stretching technology to its limits. Emission control is based on engine-internal optimization to reduce the engine-out emissions in conjunction with aftertreatment technologies, that are either Selective Catalytic Reduction (SCR) or Lean NOx Trap (LNT) based systems. Due to its ability to control high amounts of NOx, SCR is widely used in heavy-duty applications and is becoming more popular in light-duty and passenger car applications as well.
Technical Paper

Turbocharging the 1983½-1984 Ford 2.3L OHC Engine

1984-02-01
840251
Successful application of turbocharger technology to the Ford 2.3L OHC engine requires management of thermal loading. The 1979/1980 2.3L draw-thru carbureted engine was octane and spark advance limited, requiring calibration to worse case 91 RON conditions. Since no adaptive calibration control was possible relatively late ignition timing compromised engine performance. To improve performance, driveability, fuel economy and emission control, work was initiated in mid 1980 on a blow-thru electronic fuel injected engine scheduled for 1983½ production. Program assumptions were issued specifying a tuned EFI blow-thru inlet system, exhaust manifold mounted AiResearch T03 turbocharger with integral wastegate and 8.0:1 compression ratio with a dished piston. Also included were base engine revisions to accommodate increased thermal and mechanical loads.
Technical Paper

Transient Non-linear FEA and TMF Life Estimates of Cast Exhaust Manifolds

2003-03-03
2003-01-0918
A transient nonlinear Finite Element Analysis (FEA) method has been developed to simulate the inelastic deformation and estimate the thermo-mechanical fatigue life of cast iron and cast steel exhaust manifolds under dynamometer test conditions. The FEA uses transient heat transfer analysis to simulate the thermal loads on the manifold, and includes the fasteners, gasket and portion of the cylinder head. The analysis incorporates appropriate elastic-plastic and creep material models. It is shown that the creep deformation is the most single critical component of inelastic deformation for cast iron manifold ratcheting, gasket sealing, and crack initiation. The predicted transient temperature field and manifold deformation of the FEA model compares exceptionally well with two experimental tests for a high silicon-molybdenum exhaust manifold.
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

2006-04-03
2006-01-1049
Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Technical Paper

Torque Angle Signature Analysis of Joints with Thread Rolling Screws and Unthreaded Weld Nuts

2007-04-16
2007-01-1665
Bolted joint separation occurs when components of a joint are no longer capable of maintaining a clamp load. The clamp load of a joint is the resultant of various factors such as the strength of joining components, geometry, and the surface condition of the joined parts. The fastener installation torque is a very critical parameter that contributes towards achieving the desired clamping force at the joint during the assembly process. Thread rolling screws are increasingly being used in many automotive structural applications. The thread rolling screws are easy to install, are self aligning, and offer a torque prevailing feature with improved vibration resistance when mated with a un-threaded nut. This combination results in a robust joint and low field costs. They also offer increased joint strength by work hardening the mating nut interface.
Technical Paper

Ting Noise Generation in Automotive Applications

2017-03-28
2017-01-1121
Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
Technical Paper

Threshold Monitoring of Urea SCR Systems

2006-10-31
2006-01-3548
To meet stringent 2010 NOx emissions, many manufacturers are expected to deploy urea selective catalytic reduction systems. Indications from ARB are that a threshold monitor must be developed to monitor their performance. The most capable monitoring technology at this time relies on NOx sensors. This paper assesses the capability of the NOx sensor as an SCR monitoring device. To this end, the NOx sensor must be able to distinguish between a marginal and a threshold catalyst with enough separation to allow for variability. We present the noise factors associated with the NOx conversion of the SCR system, and analyze what NOx sensor accuracy we need to preserve separation in the face of those noise factors. It is shown that a 1.75 threshold monitor is not feasible with current NOx sensor technology. We analyze the benefit of a partial volume monitor, and show there is no advantage unless the slope error of the NOx sensor is drastically reduced from current levels.
Technical Paper

Three-Way Catalyst Diagnostics and Prognostics Based on Support Vector Machines

2017-03-28
2017-01-0975
A three-way catalytic converter (TWC) is an emissions control device, used to treat the exhaust gases in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to diagnose the track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
Technical Paper

Three-Dimensional Simulations of Automotive Catalytic Converter Internal Flow

1991-02-01
910200
The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter was simulated using finite difference analysis. The monolithic brick resistance was formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. This correlation was found to agree with experimental pressure drop data, and was introduced as an additional source term into the non-dimensional momentum governing equation within the brick. Flow distribution within the monolith was found to depend strongly on the diffuser performance, which is a complex function of flow Reynolds number, brick resistance, and inlet pipe length and bending angles. A distribution index was formulated to quantify the degree of non-uniformity at selected test cases covering ranges of flow conditions, brick types, and inlet conditions.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Influence of Ammonia to NOX Ratio on SCR Performance

2007-04-16
2007-01-1581
It is likely that use of urea-based selective catalytic reduction (SCR) will be needed to meet U.S. Tier 2 diesel emission standards for oxides of nitrogen (NOx). The ideal ratio of ammonia (NH3) molecules to NOx molecules (known as alpha) is 1:1 based on urea consumption and having NH3 available for reaction of all of the exhaust NOx. However, SCR efficiency can be less than 100% at low temperatures in general, and at higher temperatures with high exhaust SCR catalyst space velocities. At the low temperatures where NOx conversion efficiency is low, it may be advantageous to reduce the alpha ratio to values less than one (less NH3 than is needed to convert 100% of the NOx emissions) to avoid NH3 slip. At higher space velocities and high temperatures, the NOx conversion efficiency may be higher with alpha ratios greater than 1. There is however concern that the additional NH3 will be slipped under these conditions.
Technical Paper

The Influence of Ammonia Slip Catalysts on Ammonia, N2O and NOX Emissions for Diesel Engines

2007-04-16
2007-01-1572
The use of urea-based selective catalytic reduction (SCR) is a promising method for achieving U.S. Tier 2 diesel emission standards for NOx. To meet the Tier 2 standards for Particulate Matter (PM), a catalyzed diesel particulate filter (CDPF) will likely be present and any ammonia (NH3) that is not consumed over an SCR catalyst would pass over the CDPF to make nitrous oxide (N2O) emissions and/or oxides of nitrogen (NOx), or exit the exhaust system as NH3. N2O is undesirable due to its high greenhouse gas potential, while NOx production from the slipped NH3 would reduce overall system NOx conversion efficiency. This paper reviews certain conditions where NH3 slip past an SCR system may be a concern, looks at what would happen to this slipped NH3 over a CDPF, and evaluates the performance of various supplier NH3 slip catalysts under varied space velocities, temperatures and concentrations of NH3 and NOx.
Journal Article

The Effect of Quench Parameters on Self-Piercing Rivet Joint Performance in a High Strength Automotive 6111 Aluminum Alloy

2021-04-06
2021-01-0273
The process parameters to manufacture structural aluminum alloys are critical to their ductility. In particular, quench rate after solution heat treatment impacts the extent of grain boundary precipitation and the formation of precipitate free zone (PFZ) during later artificial aging. Cu-containing 6XXX alloys used for high strength automotive applications are quench sensitive as the Cu addition leads to Q-phase precipitation at grain boundaries, resulting in loss of ductility, which can negatively affect downstream manufacturing steps such as automotive joining and forming processes. Self-piercing rivet (SPR) joining, is a single step, spot joining process used to mechanically connect sheet materials together in automotive body structures. Ductility has been identified as an important metric of material rivet-ability or the ability to make a successful, crack-free SPR joint.
X