Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Matrix Array Technique for Evaluation of Adhesively Bonded Joints

2012-04-16
2012-01-0475
Adhesive bonding technology is playing an increasingly important role in automotive industry. Ultrasonic evaluation of adhesive joints of metal sheets is a challenging problem in Non-Destructive Testing due to the large acoustic impedance mismatch between metal and adhesive, variability in the thickness of metal and adhesive layers, as well as variability in joint geometry. In this paper, we present the results from a matrix array of small flat ultrasonic transducers for evaluation of adhesively bonded joints in both laboratory and production environments. The reverberating waveforms recorded by the array elements are processed to obtain an informative parameter, whose two-dimensional distribution can be presented as a C-scan. Energy of the reflected waveform, normalized with respect to the energy obtained from an area with no adhesive, is a robust parameter for discriminating "adhesive/no-adhesive" regions.
Technical Paper

A Methodology of Real-World Fuel Consumption Estimation: Part 1. Drive Cycles

2018-04-03
2018-01-0644
To assess the fuel consumption of vehicles, three sets of input data are required; drive cycles, vehicle parameters, and environmental conditions. As the first part of a series of studies on real-world fuel consumption, this study focuses on the drive cycles. In principle, drive cycles should represent real-world usage. Some of them aim at a specific usage such as a city driving condition or an aggressive driving style. However, the definition of city or aggressive driving is very subjective and difficult to quantitatively correlate with the real-world usage. This study proposes a methodology to quantify the speed and dynamics of drive cycles, or vehicle speed traces in general, against the real-world usage. After reviewing parameter sets found in other studies, relative cubic speed (RCS) and positive kinetic energy (PKE) are selected to represent the speed and dynamics through energy flow balance at the wheels.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A Review of Modal Choice Models: Case Study for São Paulo

2017-11-07
2017-36-0279
The world urbanization is growing rapidly, bringing many challenges for people to move in dense metropolitan regions. Public transportation is not able to attend the whole demand, and individual transportation modes are struggling with traffic congestion and stringent regulations to reduce its attractiveness, such as the license plate restriction in São Paulo. On the other hand, enablers like smartphones mass penetration, GPS connected services and shared economy have opened space to a whole new range of possible solutions to improve people perception on urban mobility. This work aims to evaluate the modal choice behavior models and understand the success factor of current mobility solutions in the city of São Paulo. The data available through origin/destination researches will be used to validate the models used in this work.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Technical Paper

A Statistical Evaluation of Brake Performance

1986-08-01
861118
Utilization of statistical methods can improve vehicle stopping-distance projections and reduce the complexity of brake deceleration models. These techniques can be very useful in the course of ascertaining whether an untested vehicle conforms to the applicable Federal Motor Vehicle Safety Standard (FMVSS), but they have much broader uses in the design of brake systems.
Technical Paper

Accuracy of Powertrain Control Module (PCM) Event Data Recorders

2008-04-14
2008-01-0162
The primary purpose of this paper is to evaluate the accuracy of speed data recorded in the Ford PCM under steady state conditions. The authors drove 3 different test vehicles at 5 different steady state speeds from 48 to 113 kph (30 to 70 mph), making 6 runs at each speed. The authors collected PCM data after each run. For the first vehicle a GPS based Racelogic VBOX III was used to measure speed. For the second and third vehicle a purpose built speed trap with .0001 second resolution was used. The authors compare the readings and calculated differences and statistical limits. The secondary purpose is to deliberately create conditions that could result in errors of speed measured, document the conditions, and to quantify the error.
Technical Paper

An Indirect Occupancy Detection and Occupant Counting System Using Motion Sensors

2017-03-28
2017-01-1442
This paper proposes a low-cost but indirect method for occupancy detection and occupant counting purpose in current and future automotive systems. It can serve as either a way to determine the number of occupants riding inside a car or a way to complement the other devices in determining the occupancy. The proposed method is useful for various mobility applications including car rental, fleet management, taxi, car sharing, occupancy in autonomous vehicles, etc. It utilizes existing on-board motion sensor measurements, such as those used in the vehicle stability control function, together with door open and closed status. The vehicle’s motion signature in response to an occupant’s boarding and alighting is first extracted from the motion sensors that measure the responses of the vehicle body. Then the weights of the occupants are estimated by fitting the vehicle responses with a transient vehicle dynamics model.
Technical Paper

Analytical Life Prediction Modelling of an Automotive Timing Belt

2008-04-14
2008-01-1207
This paper presents a methodology that makes use of computer based analytical simulation methods combined with statistical tools to predict timing belt life. This allows timing belt life to be estimated with no requirement for running test engines and associated test equipment, which is both very time and expense exhaustive. A case study on a belt driven primary drive for a V6 Diesel engine was used to illustrate the methodology. A computer based dynamic model for the belt drive system was developed and validated, and a belt life prediction model was developed, which uses tooth load predictions from the analytical model. Statistical modeling of predicted damage accumulated to failure was used to estimate the model parameters given a limited set of belt life results from a motored rig test. The practical use of the model is illustrated by predicting belt life under customer usage.
Technical Paper

Application of Fuzzy Classification Methods for Diagnosis of Reject Root Causes in Manufacturing Environment

1998-05-12
981334
This paper presents an approach of using neural network and fuzzy logic methods for the diagnosis of fault root causes in a manufacturing environment. As the first step in this approach, data from all the valid test points were collected and studied based on their statistical characteristics. An information-gain-based procedure was then followed to quantitatively evaluate the relevance of each test point to the diagnosis process. Accordingly, an objective rank of all relevant test points was generated for a particular reject. The root cause of rejects was then identified by a procedure based on an information-gain-weighted radial basis function neural network and a fuzzy multiple voting classification algorithm. This method has been tested with the top five rejects of the transmission main control component at Ford and promising results have been obtained.
Journal Article

Assessing the Access to Jobs by Shared Autonomous Vehicles in Marysville, Ohio: Modeling, Simulating and Validating

2021-04-06
2021-01-0163
Autonomous vehicles are expected to change our lives with significant applications like on-demand, shared autonomous taxi operations. Considering that most vehicles in a fleet are parked and hence idle resources when they are not used, shared on-demand services can utilize them much more efficiently. While ride hailing of autonomous vehicles is still very costly due to the initial investment, a shared autonomous vehicle fleet can lower its long-term cost such that it becomes economically feasible. This requires the Shared Autonomous Vehicles (SAV) in the fleet to be in operation as much as possible. Motivated by these applications, this paper presents a simulation environment to model and simulate shared autonomous vehicles in a geo-fenced urban setting.
Technical Paper

Assessing the Impacts of Dedicated CAV Lanes in a Connected Environment: An Application of Intelligent Transport Systems in Corktown, Michigan

2021-04-06
2021-01-0177
The interaction of Connect and Automated vehicles (CAV) with regular vehicles in the traffic stream has been extensively researched. Most studies, however, focus on calibrating driver behavior models for CAVs based on various levels of automation and driver aggressiveness. Other related studies largely focus on the coordination of CAVs and infrastructure like traffic signals to optimize traffic. However, the effects of different strategic flow management of CAVs in the traffic stream in the comparative scenario-based analysis is understudied. Thus, this study develops a framework and simulations for integrating CAVs in a corridor section. We developed a calibrated model with CAVs for a corridor section in Corktown, Michigan, and simulate how dedicated CAV lane operations can be implemented without significant change in existing infrastructure.
Technical Paper

Calculating System Failure Rates Using Field Return Data. Application of SAE-J3083 for Functional Safety and Beyond

2018-04-03
2018-01-1074
In early design activities (typically before the hardware is built), a reliability prediction is often required for the electronic components and systems in order to assess their future reliability and in many cases to meet customer specifications. These specifications may include the allocated reliability for a particular electronic unit and in the cases of functional safety products to meet the ASIL (Automotive Safety and Integrity Level) requirement specified by the functional safety standard ISO 26262. The standard allows for the use of “statistics based on field returns or tests” as a valid alternative to the handbook-based reliability prediction. This paper presents a newly developed SAE-J3083 standard “Reliability Prediction for Automotive Electronics Based on Field Return Data”, which covers the types of the required data, ways to collect it, and the methodology of how to process this data to calculate the failure rates and meet the expected safety goals.
Technical Paper

Coating on Striker: Low Coefficient of Friction to Avoid Creak Noise

2017-11-07
2017-36-0329
The unpleasant noise (creak) originated from latch-striker interaction, perceived mainly when the vehicle is submitted to uneven road conditions is generated by stick-slip phenomenon mainly due materials incompatibility of contact surfaces. Generally, eliminate this incompatibility is unfeasible due technical and/or economics constrains; this scenario makes it necessary to act in other fronts to neutralize the effects of that incompatibility. Reduce the coefficient of friction from one of contact surfaces is an alternative that can be easily applied at striker through a thin thickness coating with that property.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

Derivation and Evaluation of a Provisional, Age-Dependent, AIS3+ Thoracic Risk Curve for Belted Adults in Frontal Impacts

2005-04-11
2005-01-0297
An age-dependent, serious-to-fatal (AIS3+), thoracic risk curve was derived and evaluated for frontal impacts. The study consisted of four parts. In Part 1, two datasets of post mortem human subjects (PMHS) were generated for statistical and sensitivity analyses. In Part 2, logistic regression analyses were conducted. For each dataset, two statistical methods were applied: (1) a conventional maximum likelihood method, and (2) a modified maximum likelihood method. Therefore, four statistical models were derived — one for each dataset/statistical method combination. For all of the resulting statistical models (risk curves), the linear combination of maximum normalized sternum deflection and age of the PMHS was identified as a feasible predictor of AIS3+ thoracic injury probability. In Part 3, the PMHS-based risk curves were transformed into test-dummy-based risk curves. In Part 4, validation studies were conducted for each risk curve.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Effect of Road Excitations on Driveline Output Torque Measurements

2011-05-17
2011-01-1538
This paper presents the characterization of the random noise in driveline output shaft torque measurements that is commonly induced by road disturbances. To investigate the interaction between the shaft torque and road side excitation, torque signals are measured using a magnetoelastic torque sensor, as well as a conventional strain gauge sensor, under various types of road surfaces and conditions such as unevenness. A generalized de-trending method for producing a stationary random signal is first conducted. Statistical methods, in particular the probability density function and transform technique, are utilized to provide an evident signature for identifying the road excitation effect on the vehicle output shaft torque. Analysis results show how the road surface can act as a disturbance input to the vehicle shaft torque.
Technical Paper

Effective Evaluation of Automated Driving Systems

2017-03-28
2017-01-0031
In the last years various advanced driver assistance systems (ADAS) have been introduced on the market. More highly advanced functions up to automated driving functions are currently under research. By means of these functions partly automated driving in specific situations is already or will be realized soon, e.g. traffic jam assist. Besides the technical challenges to develop such automated driving functions for complex situations, e.g. construction or intersection areas, new approaches for the evaluation of these functions under different driving conditions are necessary, in order to assess the benefits and identify potential weaknesses. Classical approaches for evaluation and market sign off will require an extensive testing, which results in high costs and time demands. Therefore the classical approaches are hardly feasible taking into account higher levels of support and automation. Today the final sign-off requires a high amount of real world tests.
X