Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Soy Biodiesel Oxidation at Vehicle Fuel System Temperature: Influence of Aged Fuel on Fresh Fuel Degradation to Simulate Refueling

2017-03-28
2017-01-0809
An experimental study of the effects of partially-oxidized biodiesel fuel on the degradation of fresh fuel was performed. A blend of soybean oil fatty acid methyl esters (FAMEs) in petroleum diesel fuel (30% v:v biodiesel, B30) was aged under accelerated conditions (90°C with aeration). Aging conditions focused on three different degrees of initial oxidation: 1) reduced oxidation stability (Rancimat induction period, IP); 2) high peroxide values (PV); and 3) high total acid number (TAN). Aged B30 fuel was mixed with fresh B30 fuel at two concentrations (10% and 30% m:m) and degradation of the mixtures at the above aging conditions was monitored for IP, PV, TAN, and FAME composition. Greater content of aged fuel carryover (30% m:m) corresponded to stronger effects. Oxidation stability was most adversely affected by high peroxide concentration (Scenario 2), while peroxide content was most reduced for the high TAN scenario (Scenario 3).
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
X