Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wireless Power Transfer for Electric Vehicles

2011-04-12
2011-01-0354
As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wavelet-Based Visualization of Impulsive and Transient Sounds in Stationary Background Noise

2001-04-30
2001-01-1475
Scalograms based on shift-invariant orthonormal wavelet transforms can be used to analyze impulsive and transient sounds in the presence of more stationary sound backgrounds, such as wind noise or drivetrain noise. The visual threshold of detection for impulsive features on the scalogram (signal energy content vs. time and frequency,) is shown to be similar to the audible threshold of detection of the human auditory system for the corresponding impulsive sounds. Two examples of impulsive sounds in a realistic automotive sound background are presented: automotive interior rattle in a vehicle passenger compartment, and spark knock recorded in an engine compartment.
Technical Paper

Virtual Verification of Wrecker Tow Requirements

2020-04-14
2020-01-0766
Under various real-world scenarios, vehicles can become disabled and require towing. OEMs allow a few options for vehicle wrecker towing that include wheel lift tow using a stinger or towing on a flatbed. These methods entail multiple loading events that need to be assessed for damage to the towed vehicle. OEMs have several testing and evaluation methods in place for those scenarios with majority requiring physical vehicle prototypes. Recent focus to reduce product development time and cost has replaced the need for prototype testing with analytical verification methods. In this paper, the CAE method involving multibody dynamic simulation (MBDS) as well as finite element analysis (FEA) of vehicle flatbed operation, winching onto a flatbed, and stinger-pull towing are discussed.
Technical Paper

Virtual Temperature Controlled Seat Performance Test

2018-04-03
2018-01-1317
The demand for seating comfort is growing - in cars as well as trucks and other commercial vehicles. This is expected as the seat is the largest surface area of the vehicle that is in contact with the occupant. While it is predominantly luxury cars that have been equipped with climate controlled seats, there is now a clear trend toward this feature becoming available in mid-range and compact cars. The main purpose of climate controlled seats is to create an agreeable microclimate that keeps the driver comfortable. It also reduces the “stickiness” feeling which is reported by perspiring occupants on leather-covered seats. As part of the seat design process, a physical test is performed to record and evaluate the life cycle and the performance at ambient and extreme temperatures for the climate controlled seats as well as their components. The test calls for occupied and unoccupied seats at several ambient temperatures.
Technical Paper

Virtual Methods for Water Management in Automotive Structures

2023-04-11
2023-01-0933
The requirements of the automotive industry move along due to product competitiveness and this contributes to increase complexity in the requirements for evaluation. Simulation tools play a key role thanks to their versatility and multiple physical phenomena that can be represented. The axis of analysis for this paper is the problem of the interaction of airflow and water flow in the cowl/plenum/leaf screen components. Airflow is represented by HVAC system operating and water flow by the vehicle in torrential rain. Initially, one simulation is evaluated at a time, in one side, the airflow entering the HVAC system in which the amount of air entering is monitored and pressure drop, on the other, the water simulation on the vehicle, both using a Lagrangian CFD model (using with tools such as STAR CCM+® or Ansys Fluent®) Due to this, a CFD methodology was developed to evaluate the interaction of air and water flow.
Technical Paper

Vibration Mode Study of Steering Columns for Commercial Vehicles

2008-10-07
2008-36-0193
On the development process of truck vehicles, the dynamic behavior must be considered together with the costs involved in this development. Objective measurements, subjective evaluations and CAE simulations are used in order to support this development process. Ride comfort, acceleration and braking performance, handling and NVH are examples of attributes considered in the dynamic behavior evaluation of a tuck. Some characteristics of steering column vibration, noise and harshness are relevant to guarantee driver comfort level and vehicle safety. In this work, CAE models validated by experimental measurements were used to identify cab and vehicle modes of vibration which have significant influence on steering column response. Using this procedure, an alternative was proposed in order to decrease the amplitudes of cab and steering column vibration.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Technical Paper

Vehicle-to-Vehicle Communication using AppLink

2015-09-22
2015-36-0271
With the increasing number of cars on the street, the exchange of information between those cars becomes essential to improve the driving skills of each driver, resulting in a safer, intelligent and more dynamic traffic. The task now is to make it accessible for everyone. One possible and cheap way to solve this issue is to seek possibilities on free technologies within market trends. Using the smartphone platforms, which holds a high level of embedded technologies, becoming a global communication device even to interpersonal and to social networks, and AppLink Development Kit for smartphones and vehicles integration, this paper will cover aspects about the integration of the kit to an database application based on the cloud, enabling real-time interaction between two cars. Making possible to a driver have access to information and current status of other cars to aid ones life on heavy traffic.
Technical Paper

Vehicle Touchscreen Shelf Study

2017-03-28
2017-01-1378
Researchers report an estimated 35.7 million of vehicles with touchscreens will be sold in 2019 worldwide [1]. As the use of touchscreens grows in the automotive industry, there is a need to study how driver’s arm and hand moves to access the touchscreen as well as how the driver utilizes the hardware around the touchscreen. In order to aid drivers while using the touchscreen and to minimize distractions, the drivers’ hand must be able to freely move to perform a task on the touchscreen without the trim interfering with the task. At the same time some trim may be used to support the hand and fingers while accessing the touchscreen particularly during tasks that take a longer period of time to complete. A study was performed to understand the effect of the size and the angle of a shelf placed under a touchscreen. Motion capture (Mocap) data of the hand of subjects performing two different tasks on the touchscreen was collected in the Human Occupant Package Simulator (HOPS).
Technical Paper

Vehicle System Controls for a Series Hybrid Powertrain

2011-04-12
2011-01-0860
Ford Motor Company has investigated a series hybrid electric vehicle (SHEV) configuration to move further toward powertrain electrification. This paper first provides a brief overview of the Vehicle System Controls (VSC) architecture and its development process. The paper then presents the energy management strategies that select operating modes and desired powertrain operating points to improve fuel efficiency. The focus will be on the controls design and optimization in a Model-in-the-Loop environment and in the vehicle. Various methods to improve powertrain operation efficiency will also be presented, followed by simulation results and vehicle test data. Finally, opportunities for further improvements are summarized.
Journal Article

Vehicle System Control Software Validation for the Dual Drive Hybrid Powertrain

2009-04-20
2009-01-0736
Through the use of hybrid technology, Ford Motor Company continues to realize enhanced vehicle fuel economy while meeting customer performance and drivability targets. As is characteristic of all Ford Hybrid Electric Vehicles (HEVs), the basis for resolving these competing requirements resides with its Vehicle System Control (VSC) strategy. This strategy implements complex high-level executive controls to coordinate and optimize the desired operational state of the major HEV powertrain subsystems. To ensure that the VSC software meets its intended functionality, a software validation process developed at Research and Advanced Engineering has been integrated as part of the vehicle controls development process. In this paper, this VSC software validation process implemented for a next generation hybrid powertrain is presented. First, an overview of the hybrid powertrain application and the VSC software architecture is introduced.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle Paint Radiation Properties and Affect on Vehicle Soak Temperature, Climate Control System Load, and Fuel Economy

2005-04-11
2005-01-1880
Vehicle thermal loads in sunny climates are strongly influenced by the absorption of solar thermal energy. Reduction of the absorptivity in the near infrared (IR) spectrum would decrease vehicle soak temperatures, reduce air conditioning power consumption and not affect the vehicle visible spectrum radiation properties (color). The literature [1] indicates that paint formulations with carbon-black pigment removed or reduced can be made to be reflective to near infrared frequencies. Experiments indicated that the reflectivity can be improved with existing basecoats and primers. Experiments and numerical simulations indicate that vehicle soak temperatures can be reduced by over 2 °C with existing basecoats and primers.
X