Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Spot Weld Failure Loads under Combined Mode Loading Conditions

2001-03-05
2001-01-0428
Failure loads of spot welds are investigated under static and impact loading conditions. A test fixture was designed and used to obtain maximum loads of spot welds under a range of combined opening and shear loads with different loading rates. Optical micrographs of the cross sections of spot welds before and after failure were obtained to understand the failure processes under various loading rates and different combinations of loads. The experimental results indicate that under nearly pure opening loads, the failure occurs along the nugget circumferential boundary. Under combined opening and shear loading conditions, the failure starts from the tensile side of the base metal near the nugget in a necking/shear failure mode. The effects of sheet thickness and combined load on the load carrying behavior of spot welds are investigated under static and impact loading conditions based on the experimental results.
Technical Paper

Modeling and Testing of Spot Welds under Dynamic Impact Loading Conditions

2002-03-04
2002-01-0149
Failure behavior of spot welds is investigated under impact loading conditions. Three different impact speeds were selected to test both HSLA steel and mild steel specimens under combined opening and shear loading conditions. A test fixture was designed and used to obtain the failure loads of spot weld specimens of different thicknesses under a range of combined opening and shear loads with different impact speeds. Accelerometers were installed on the fixtures and the specimens for investigation of the inertia effects. Optical micrographs of the cross sections of failed spot welds were obtained to understand the failure processes in both HSLA steel and mild steel specimens under different combined impact loads. The experimental results indicate that the failure mechanisms of spot welds are very similar for both HSLA steel and mild steel specimens with the same sheet thickness. These micrographs show that the sheet thickness can affect the failure mechanisms.
Technical Paper

Failure Loads of Spot Friction Welds in Aluminum 6111-T4 Sheets under Quasi-Static and Dynamic Loading Conditions

2007-04-16
2007-01-0983
In this investigation, spot friction welds in aluminum 6111-T4 lap-shear specimens were tested under both quasi-static and dynamic loading conditions. Micrographs of the spot friction welds after testing were examined to understand the failure modes of spot friction welds in lap-shear specimens under different loading conditions. The micrographs indicate that the spot friction welds produced by this particular set of welding parameters failed in interfacial failure mode under both quasi-static and dynamic loading conditions. The load and displacement histories for lap-shear specimens were obtained under quasi-static and dynamic loading conditions at three different impact velocities. The failure loads of spot friction welds in lap-shear specimens under dynamic loading conditions are about 7% larger than those under quasi-static loading conditions.
Technical Paper

Crush Behaviors of Aluminum Honeycombs of Different Cell Geometries Under Compression Dominant Combined Loads

2006-04-03
2006-01-0122
The influence of cell geometries on the quasi-static crush behaviors of aluminum honeycombs is explored by experiments. Aluminum 5052-H38 honeycomb specimens with different in-plane orientation angles, cell wall thicknesses and cell sizes were tested under compression dominant combined loads. The load histories of these specimens were obtained. A quadratic and a linear phenomenological yield criteria are used to fit the obtained experimental normal crush and shear strengths for three types of honeycomb specimens under compression dominant combined loads. The quadratic yield criterion is used to fit the experimental results for two types of honeycomb specimens with low relative densities. The linear yield criterion is used to fit the experimental results for one type of honeycomb specimens with a high relative density.
X