Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Heavy Duty Vehicle Clutch Remanufacturing for Market Cannibalization, Profitability and Environmental Benefits

2014-09-30
2014-01-2428
Remanufacturing is a process in which used products are disassembled, and their components are repaired and used in the production of new products. This study investigates the impact of various remanufacturing decisions on Original Equipment Manufacturer (OEM) profitability and market cannibalization in an infinite-horizon production scenario for heavy duty vehicle (HDV) clutches. A discrete event simulation model is developed for benchmarking of different scenarios using various factors and their levels. There are two consumer segments as primary customer and grey customer in the market. Three different end of life (EOL) clutch quality conditions are defined, and three different percentages of clutch collect strategies are defined for all EOL products in the market.
Technical Paper

Electric Regenerative Power Assisted Brake Algorithm for a Front and Rear Wheel Drive Parallel Hybrid Electric Commercial Van

2008-10-07
2008-01-2606
There is an increasing trend in the worldwide automotive area towards developing hybrid electric vehicles as an intermediate solution to fulfill the new, more stringent pollutant emission level requirements set by governments. Conversion of braking energy into electrical energy stored in the battery through regenerative braking is an important aspect of hybrid electric vehicles that increases their fuel efficiency. This paper presents an electric regenerative power assisted brake algorithm developed to enhance energy efficiency of a front and rear wheel drive parallel hybrid electric commercial vehicle. The commercial vehicle used in this study is a second generation research prototype Ford Transit Parallel Hybrid Electric Van. The existing hydraulic brake system of this van was not altered for reasons of safety and reliability in the case of a problem with regenerative barking.
Technical Paper

Dynamic Simulation and Endurance Limit Safety Factor Calculation for Crankshaft - Comparison of Single Mass and Dual Mass Flywheel

2008-10-07
2008-01-2622
The crankshaft is the component which transmits dynamical loading from cylinder pressure and inertial loads in engine operating conditions. Because of the crucial importance of its function, crankshaft fatigue life is desired to be higher than the predicted engine operating life. In this study, Puma I5 crankshaft dynamic simulation is performed with multi body dynamics technique. Fatigue safety factors are calculated with the dynamical loadings of engine operating conditions. The effects of single mass and dual mass flywheel on endurance limit are analyzed in this study.
X