Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Comparing the Forward Collision Warning Response of a 2020 Toyota Camry and 2020 Toyota RAV4

2024-04-09
2024-01-2471
Testing was conducted at four speeds – 35, 50, 60, and 70 mph – to evaluate the performance of the audible and visual forward collision warning (FCW) component of the pre-collision system (PCS) in a 2020 Toyota RAV4 and a 2020 Toyota Camry. Both vehicles were tested in daytime conditions while approaching a Stationary Vehicle Target (SVT). The 2020 Toyota Camry was also tested in nighttime conditions while approaching a live stationary vehicle. Testing measured the time to collision (TTC) values at the issuance of the FCW, the distance from the test vehicles to the target at FCW, and the speed of the test vehicle at FCW utilizing Racelogic VBOX data acquisition systems. A comparison of the performance of the FCW component of two different generations of Toyota Safety Sense – P versus 2.0 – was also made.
Technical Paper

An Evaluation of the Sensitivity of the User-Selected Forward Collision Warning Distance in a 2017 Honda CR-V

2023-04-11
2023-01-0622
Testing was conducted to evaluate the effect on the Time to Collision (TTC) values of the visual and audible components of the Forward Collision Warning (FCW) provided by a 2017 Honda CR-V by changing the user-selected FCW Distance between Long, Normal, and Short. As part of the Honda Sensing Collision Mitigation Braking System (CMBSTM), these user-selected values change the timing of the issuance of the visual and audible warning provided to drivers. This testing evaluated the Honda at speeds of 20, 35, 50, 60, and 65 miles per hour (mph) versus a stationary live vehicle in daytime conditions in a simulated rear collision scenario. Different FCW distance settings were selected to compare the response of the system at the 20 – 65 mph range of speeds. The TTC at FCW and the distance between the Honda and the target at FCW are presented and compared at each speed and user-selected FCW Distance setting.
Technical Paper

An Evaluation of the Performance of the WABCO OnGuardACTIVE Collision Mitigation System in a 2019 Freightliner M2 106

2023-04-11
2023-01-0011
Testing was conducted in daytime and nighttime conditions at four speeds – 35, 50, 55, and 60 miles per hour (mph) – to evaluate the performance of the audible and visual forward collision warning (FCW) system in a WABCO OnGuardACTIVE collision mitigation system (CMS) while approaching a foam stationary vehicle target (SVT). Testing measured the time to collision (TTC) values utilizing a VBOX data acquisition system as well as an “analog” system utilizing synced cameras and a reference line painted on the test track. WABCO Toolbox was utilized to download OnGuard data from the Freightliner after each test; this data was then compared to the data acquired by the VBOX data acquisition system. The results of the testing provide valuable information to collision investigators on the performance of the WABCO OnGuardACTIVE Collision Mitigation System on stationary vehicles.
Technical Paper

An Evaluation of the Performance of the Bendix Wingman Fusion G1 Collision Mitigation System in a 2017 Kenworth T680

2024-04-09
2024-01-2893
The Bendix Wingman Fusion – a radar and camera collision mitigation system (CMS) available on commercial vehicles – was evaluated in two separate test series to determine its performance in simulated rear collision scenarios. In the first series of tests, evaluations were conducted in daytime, nighttime, and rainy conditions between 15 to 58 miles per hour (mph) to evaluate the performance of the audible and visual forward collision warning (FCW) system in a first-generation Bendix Wingman Fusion CMS while approaching a stationary live vehicle target (SLVT) in a 2017 Kenworth T680. A second test series was conducted with a 2017 Kenworth T680 traveling at 50 mph in daytime conditions approaching a decelerating vehicle to evaluate the Bendix Wingman Fusion CMS on the truck. Both test series sought to determine the maximum distance the system would warn prior to the test driver swerving around the SLVT or moving vehicle target.
Technical Paper

An Evaluation of the Performance of the Bendix Wingman Advanced Collision Mitigation System in a 2018 & 2019 International 4300

2023-04-11
2023-01-0013
The Bendix Wingman Advanced – a radar-only collision mitigation system (CMS) available on commercial vehicles – was evaluated in two separate test series to determine its performance in simulated stationary vehicle rear collision scenarios. In the first series of tests, evaluations were conducted in daytime and nighttime conditions at two speed ranges – 35 and 45-50 miles per hour (mph) – to evaluate the performance of the audible and visual forward collision warning (FCW) system in a Bendix Wingman Advanced CMS while approaching a stationary vehicle target (SVT) in a 2018 International 4300. Two years later, a second test series was conducted with a 2019 International 4300 traveling between 15 – 55 mph in low light and nighttime conditions approaching the SVT to evaluate the Bendix Wingman Advanced CMS on the truck. Both test series sought to determine the maximum speed the system would warn prior to the test driver swerving around the SVT.
Technical Paper

An Evaluation of the Forward Collision Warning System and Evasive Steering Maneuvers using a 2016 Volvo XC90

2023-04-11
2023-01-0627
Testing was conducted in daytime conditions at four speeds – 35, 50, 60, and 70 mph – to evaluate the performance of the audible and visual forward collision warning (FCW) component of the collision mitigation system in a 2016 Volvo XC90 while approaching a stationary vehicle target (SVT) in a rear collision scenario. Testing measured the time to collision (TTC) values at the issuance of the FCW, the distance from the test Volvo to the SVT at FCW, and the speed of the Volvo at FCW utilizing Racelogic VBOX data acquisition systems. The results of the testing add higher speed scenarios to the database of publicly available tests from sources like the Insurance Institute for Highway Safety (IIHS), which currently evaluates vehicles at 12 and 25 mph. In addition, the timing and accelerations of evasive steering maneuvers relative to the SVT were quantified.
Technical Paper

An Evaluation of the Automatic Emergency Braking and Forward Collision Warning System in a 2014 Subaru Forester

2023-04-11
2023-01-0621
Testing was conducted to evaluate the performance of the 2014 Subaru Forester’s North American Generation 1 EyeSight system at speeds between 6 and 57 miles per hour (mph). The testing utilized a custom-built foam stationary vehicle target designed to withstand 60+ mph impact speeds. Testing measured the Time to Collision (TTC) values of the visual/audible component of the forward collision warning that was presented to the driver. In addition, the testing quantified the TTC and Time to Collision 2 (TTC2) response of the Automatic Emergency Braking (AEB) system including the timing and magnitude of the stage one braking response and the timing and magnitude of the stage two braking response. The results of the testing add higher speed Forward Collision Warning (FCW) and AEB testing scenarios to the database of publicly available tests from sources like the Insurance Institute for Highway Safety (IIHS), which currently evaluates vehicles’ AEB systems at speeds of 12 and 25 mph.
Technical Paper

An Assessment of the Tesla Model 3's Forward Collision Warning and Automatic Emergency Braking Systems against a Stationary Pedestrian Target

2024-04-09
2024-01-2482
A total of 93 tests were conducted in daytime conditions to evaluate the effect on the Time to Collision (TTC), emergency braking, and avoidance rates of the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) provided by a 2022 Tesla Model 3 against a 4ActivePA adult static pedestrian target. Variables that were evaluated included the vehicle speed on approach, pedestrian offsets, pedestrian clothing, and user-selected FCW settings. As a part of the Tesla’s Collision Avoidance AssistTM, these user-selected FCW settings change the timing of the issuance of the visual and/or audible warning provided. This testing evaluated the Tesla at speeds of 25 and 35 miles per hour (mph) versus a stationary pedestrian target in early, medium, and late FCW settings. Testing was also conducted with a 50% pedestrian offset and 75% offset conditions relative to the right side of the Tesla.
X