Refine Your Search

Topic

Author

Search Results

Technical Paper

A Driver Behavior Recognition Method Based on a Driver Model Framework

2000-03-06
2000-01-0349
A method for detecting drivers' intentions is essential to facilitate operating mode transitions between driver and driver assistance systems. We propose a driver behavior recognition method using Hidden Markov Models (HMMs) to characterize and detect driving maneuvers and place it in the framework of a cognitive model of human behavior. HMM-based steering behavior models for emergency and normal lane changes as well as for lane keeping were developed using a moving base driving simulator. Analysis of these models after training and recognition tests showed that driver behavior modeling and recognition of different types of lane changes is possible using HMMs.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

A data driven approach for real-world vehicle energy consumption prediction

2024-04-09
2024-01-2870
Accurately predicting real-world vehicle energy consumption is essential for optimizing vehicle designs, enhancing energy efficiency, and developing effective energy management strategies. This paper presents a data-driven approach that utilizes machine learning techniques and a comprehensive dataset of vehicle parameters and environmental factors to create precise energy consumption prediction models. The methodology involves recording real-world vehicle data using data loggers to extract information from the CAN bus systems for ICE and hybrid electric, as well as hydrogen and battery fuel cell vehicles. Data cleaning and cycle-based analysis are employed to process the dataset for accurate energy consumption prediction. This includes cycle detection and analysis using methods from statistics and signal processing, and then pattern recognition based on these metrics.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Air-Fuel Ratio Measurement Diagnostics During Cranking and Startup in a Port-Fuel-Injected Spark-Ignition Engine

2004-06-08
2004-01-1915
Cranking and startup fuel control has become increasingly important due to ever tightening emission requirements. Additionally, engine-off strategies during idle will require substantially more engine startup events with the associated need for very clean starts. Thus, knowledge of an engine's Air-Fuel Ratio (AFR) during its early cycles is necessary in order to optimize cranking and startup fueling. This paper examines and compares two methods of measuring an engine's AFR during engine startup (approximately the first second of operation); an in-cylinder technique using a Fast Flame Ionization Detector (FFID) and the conventional exhaust based Universal Exhaust Gas Oxygen (UEGO) sensor method. Engine starts using a Ford Zetec engine were performed at three different temperatures (0, 20 and 90 C) as well as different initial engine starting positions.
Technical Paper

Analysis of Vehicle Kinematics, Injuries and Restraints in DRoTS Tests to Match Unconstrained Rollover Crashes

2016-04-05
2016-01-1518
Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Bio-Suit Development: Viable Options for Mechanical Counter Pressure

2004-07-19
2004-01-2294
Human explorers of planetary surfaces would benefit greatly from a spacesuit design that facilitates locomotion. To aid in the development of such an extravehicular activity suit, a design effort incorporating the concept of mechanical counter pressure (MCP) was undertaken. Three-dimensional laser scanning of the human body was used to identify the main effects of knee flexion angle on the size and shape of the leg. This laser scanning quantified the changes in shape that must be supported by an MCP garment and the tension that must be developed to produce even MCP. Evaluation of a hybrid-MCP concept using inextensible materials demonstrated strong agreement between experimental data and a mathematical model with rigid cylinder geometry. Testing of a form-fitting garment on the right lower leg of a subject demonstrated successful pressure production. Further research is required to evaluate how evenly pressure can be distributed using the hybrid-MCP concept.
Technical Paper

Comparing the Driving Safety Benefits of Brain Fitness Training Programs for Older Drivers

2016-04-05
2016-01-1441
This study presents a long-term examination of the effects of two types of perceptual-cognitive brain training programs on senior driver behavior and on-road driving performance. Seniors (70+) engaged in either a Toyota-designed in-vehicle training program based on implicit learning principles or a commercially available computer-based training program developed by Posit Science. Another group served as a no-contact control group; total enrollment was 55 participants. Participants completed a series of four experimental sessions: (1) baseline pre-training, (2) immediate post-training, (3) 6-9 months post-training, and (4) 12-16 months post-training. Experimental metrics taken at each session included measures of vehicle control and driver glance behavior on public roads.
Technical Paper

Conceptual Development and Implementation of a Reconfigurable Interior Concept for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-0321
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to explain the interior concept that offers a flexible interior utility/activity space for Generation Z (Gen Z) users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish technical specifications, which formed the foundation of the Unique Selling Points (USPs) of the concept.
Journal Article

Conceptual Development of a Multi-Material Composite Structure for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1334
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
Technical Paper

Conceptualization and Implementation of a Dual-Purpose Battery Electric Powertrain Concept for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1182
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Measuring Vibration Characteristics in Seating

2016-04-05
2016-01-1313
Most methods of vibration analysis focus on measuring the level of vibration. Some methods like ISO-2631 weigh vibration level based on human sensitivity of location, direction, and frequency. Sound can be similarly measured by sound pressure level in dB. It may also be weighted to human frequency sensitivity such as dBA but sound and noise analysis has progressed to measure sound quality. The characteristic and the nature of the sound is studied; for example equal or near equal sound levels can provide different experiences to the listener. Such is the question for vibration; can vibration quality be assessed just as sound quality is assessed? Early on in our studies, vibration sensory experts found a difference in 4 seats yet no objective measurement of vibration level could reliably confirm the sensory experience. Still these particular experiences correlated to certain verbal descriptors including smoothness/roughness.
Technical Paper

Modeling the Extravehicular Mobility Unit (EMU) Space Suit: Physiological Implications for Extravehicular Activity (EVA)

2000-07-10
2000-01-2257
Extravehicular activity (EVA) is investigated through experiments testing an actual extravehicular mobility unit (EMU) performing several EVA tasks in the laboratory, and a dynamic model of the EMU space suit is developed. Building directly on earlier work in EVA simulation, the space suit model was created from mass, inertia, and performance data to augment the unsuited 12-segment human model used in previous studies. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and implemented numerically based on observed suit parameters. Computational simulations, based loosely on a 1995 EVA involving manipulation of the Spartan astrophysics payload, were performed to observe the effect of suit constraints on simulated astronaut performance.
Technical Paper

New Demands from an Older Population: An Integrated Approach to Defining the Future of Older Driver Safety

2006-10-16
2006-21-0008
The nearly 77 million baby boomers, born between 1946 and 1964, can say that they are the automobile generation. Now turning 60 one every seven seconds, what are the new safety challenges and opportunities posed by the next generation of older adults? This paper presents a modified Haddon matrix to identify key product development, design and liability issues confronting the automobile industry and related stakeholders. The industry is now at a critical juncture to address the development of key technological innovations as well as the changing policy and liability environments being reshaped by an aging population.
Technical Paper

Observed Differences in Lane Departure Warning Responses during Single-Task and Dual-Task Driving: A Secondary Analysis of Field Driving Data

2016-04-05
2016-01-1425
Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
Technical Paper

Perceptions of Two Unique Lane Centering Systems: An FOT Interview Analysis

2020-04-14
2020-01-0108
The goal of this interview analysis was to explore and document the perceptions of two unique lane centering systems (S90’s Pilot Assist and CT6’s Super Cruise). Both systems offer a similar type of functionality (adaptive cruise control and lane centering), but have significantly different design philosophies and HMI (Human-Machine Interface) implementations. Twenty-four drivers drove one of the two vehicle models for a month as part of a field operational test (FOT) study. Upon vehicle return, drivers took part in a 60-minute semi-structured interview covering their perceptions of the vehicle’s various advanced driver-assistance systems (ADAS). Transcripts of the interviews were coded by two researchers, who tagged each statement with relevant system and perception code labels. For analysis, the perception codes were grouped into larger thematic bins of safety, comfort, driver attention, and system performance.
X