Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Journal Article

Role of Accurate Numerical Simulation of Brake Cooldown in Brake Design Process

2012-09-17
2012-01-1811
An important metric in the vehicle brake design process, the cool-down time for a brake disk, strongly influences the durability and reliability of brakes. However, the brake cool-down time is a function of many vehicle and chassis factors, making it time consuming and expensive to evaluate and optimize in hardware testing. In this study, we investigate an alternative approach to hardware testing for evaluating brake design cool-down time by implementing a CFD (Computational Fluid Dynamics) simulation based methodology. The simulation cases were all compared with test data and good agreement was observed between test data and simulation over a wide range of design parameters. It is therefore demonstrated that accurate simulation is a promising new approach to the brake design process.
Technical Paper

Carbon Silicon Carbide Brakes for a Premium Saloon - an NVH Perspective

2016-09-18
2016-01-1920
Bentley Motors Ltd. has developed a Carbon Silicon Carbide (CSiC) brake system for its Mulsanne product, introduced at 17MY. The CSiC brake system is conceived as a performance brake system, and as such offers notable improvements in brake performance. In developing the brake system, particular focus was placed on meeting the refinement levels required for a premium product, and indeed as the flagship model for Bentley Motors, NVH refinement of the brake system was of particular concern. This paper intends to discuss the technical performance of the brake system and review the NVH performance of the brakes. Particular attention is given to the methodology employed by Bentley Motors Ltd. and IDIADA Automotive Technology S.A. in identifying NVH concerns, and proposing and validating solutions in the field, through extensive NVH endurance runs. The performance of the system is benchmarked against similar systems offered by Bentley Motors.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
X