Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Understanding Vapor and Solution Phase Corrosion of Lubricants Used in Electrified Transmissions

2020-04-14
2020-01-0561
In this study, the copper corrosion rates of commercially available lubricants used in electrified and conventional transmissions are measured in both vapor and solution phases simultaneously using an updated version of our previously reported wire resistance test [1]. Unlike the commonly used copper strip tests (versions of the ASTM D130) that generally require high temperatures and long times to differentiate the corrosivity of fluids, the wire resistance test is sufficiently sensitive as to allow real time assessment, thus enabling an efficient and cost-effective way to screen lubricant chemistries over a range of potential operating temperatures. The results of even our small study underscores the importance of understanding both the vapor and solution corrosion across a wide range of temperatures.
Technical Paper

Diesel Engine Piston Scuffing: A Preliminary Investigation

1993-03-01
930687
Failure analyses were conducted on the top piston rings from selected Caterpillar 1K tests. Metallography, scanning electron microscopy, and X-ray spectroscopy were applied to characterize the top ring surface and subsurface damage. Pitting an erosion of the ring's hard facing characterized the damage observed in the scuffing cases studied. These observations support the theory that top ring failure may have started the chain of events that lead up to piston scuffing in the 1K. The top ring damage may be the result of corrosive combustion by-products that are formed in the ring belt area. The analyses in all three cases indicated that top ring failure had occurred prior to piston skirt scuffing. Several hypotheses are offered as to what may have initiated this top ring failure.
Technical Paper

Cooled EGR Rate Measurement with a Thermal Anemometer for EPA02 Heavy Duty Diesel Engine Emission Control

2003-03-03
2003-01-0263
Cooled EGR is one of the engine technologies that has been certified by the EPA for on-highway heavy duty diesel engines to meet the EPA October 2002 2.5 g/bhp-hr NMHC + NOx and 0.1 g/bhp-hr particulate matter exhaust emission regulation. Cooled EGR as the primary exhaust emission control reduction technology also minimizes the fuel economy penalty associated with this exhaust emission regulation. The cooled EGR system however requires precise EGR rate of flow control in a very unfriendly environment that includes acidic exhaust gas condensates, static pressures up to 4 Bar, temperatures over the entire range of -40 to 250° C, and high engine vibration levels. Several technologies have been proposed and evaluated to achieve a closed loop feedback signal for the EGR flow control valve and VGT (Variable Geometry Turbocharger) vane position.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

API CI-4: The First Oil Category for Diesel Engines Using Cooled Exhaust Gas Recirculation

2002-05-06
2002-01-1673
This oil category was driven by two new cooled exhaust gas recirculation (EGR) engine tests operating with 15% EGR, with used oil soot levels at the end of the test ranging from 6 to 9%. These tests are the Mack T-10 and Cummins M11 EGR, which address ring, cylinder liner, bearing, and valve train wear; filter plugging, and sludge. In addition to these two new EGR tests, there is a Caterpillar single-cylinder test without EGR which measures piston deposits and oil consumption control using an articulated piston. This test is called the Caterpillar 1R and is included in the existing Global DHD-1 specification. In total, the API CI-4 category includes eight fired-engine tests and seven bench tests covering all the engine oil parameters. The new bench tests include a seal compatibility test for fresh oils and a low temperature pumpability test for used oils containing 5% soot. This paper provides a review of the all the tests, matrix results, and limits for this new oil category.
X