Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Predicting Impact Performance of Painted Thermoplastic Exterior Body Panels

2001-03-05
2001-01-0445
Automotive exterior paint systems can significantly affect the impact performance of thermoplastic body panels. To utilize the benefits of predictive engineering as a tool to assist in the design and development of thermoplastic body panels, thermoplastic body panel materials have been characterized with typical automotive paint systems for use for finite element modeling and analysis. Paint systems used for exterior body panels can vary from rigid to more flexible, depending on the vehicle manufacturer's specifications. Likewise, thermoplastics for body panels vary in mechanical properties, primarily depending on the heat performance requirements of the application. To understand the effects of paint systems on impact performance of thermoplastic body panels, two different paint systems, representing “rigid” and “more flexible,” were evaluated on two body panel grades of thermoplastics with different mechanical properties.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

High Strain Rate Testing of Engineering Thermoplastics for Head Impact Applications

1996-02-01
960153
With the recent amendment to FMVSS 201 upper interior components must now absorb the energy imparted during a head impact The necessary redesign of these parts will require a thorough understanding of material behavior under impact conditions. A study was conducted to evaluate several materials at strain rates and temperatures representative of upper interior conditions under head impact The results of this study show that engineering thermoplastics behave more consistently and predictably at higher strain rates than do polyolefins and are much less rate sensitive than the olefinic materials
Technical Paper

GM's Evolving Epsilon Midsize Car Platform

2005-04-11
2005-01-1028
This paper reviews the history of the General Motor's Epsilon Platform from a Body Structure perspective. From the time that it was conceived in 1996 to the present, the platform has evolved to meet many changing requirements. The focus of this paper will cover basic body requirements such as crash performance, modal requirements, packaging issues, changes for wheelbase and powertrains, mass, different body styles, etc, including the differences between European and US requirements. It will demonstrate that this globally developed platform met all its initial requirements and continued to evolve over time to meet additional changing requirements.
Technical Paper

Failure Evaluation of Clinched Thin Gauged Pedestrian Friendly Hood by Slam Simulation

2011-04-12
2011-01-0789
In order to reduce the number of head injuries sustained by pedestrian accidents, safety engineers are developing pedestrian friendly hood systems through gauge optimization of the hood inner panel. In this study, the clinch method was employed to assemble a pedestrian friendly hood with a 0.5mm thick inner panel. Static and dynamic analyses were carried out to determine the clinch experiencing the highest loads and to understand the fatigue behavior of a clinched hood during a slam event. The macroscopic failure modes of clinched joints by hood slam were studied by means of a scanning electron microscope. A simple equation was derived to correlate the hexahedron spot weld model as a substitute for clinching in order to obtain an equivalent stiffness for a clinched joint within the linear region of an F-D curve. The F-D curve was obtained by lap shear testing.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

Energy-Absorbing Thermoplastics for Head Impact Applications

1996-02-01
960154
The August 1996 expansion of FMVSS 201 established head impact performance criteria for upper interior components This standard has forced automotive manufacturers, designers, and suppliers to change their thinking for interiors, especially pillars, compliance with FMVSS 201 will require new, structural designs and energy-absorbing materials An ongoing study has examined the implications of FMVSS 201 and its effect on pillars The results of this study have demonstrated how energy-absorbing engineering thermoplastics can be used to meet and exceed the requirements of the head impact legislation through single-piece pillar trims
Technical Paper

Design for Crashworthiness of Vehicle Structures Using an Extended Hybrid Cellular Automaton Method

2019-04-02
2019-01-0842
This paper introduces a design methodology to tailor the acceleration and displacement responses of a vehicle structure subjected to a dynamic crushing load. The proposed approach is an extension of the hybrid cellular automaton (HCA) method, through which the internal energy density is uniformly distributed within the structure. The proposed approach, referred here to as an extended HCA (xHCA) method, receives the suitable combinations of volume fraction and a finite element meta-parameter for which the algorithm synthesizes the load paths that allow the desired crash response. Lower meta-parameter values lead designs obtained by traditional optimizers, while larger values lead to designs obtained by the HCA method. Simultaneous implementation of multiple values of meta-parameters is presented here as a further development of xHCA method.
X