Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Vehicle-Level EMC Modeling for HEV/EV Applications

2015-04-14
2015-01-0194
Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

Using the Hybrid FE-SEA Method to Predict and Diagnose Component Transmission Loss

2007-05-15
2007-01-2172
This paper investigates the application of the Hybrid FE-SEA method to the prediction of the Transmission Loss (TL) of a front-of-dash component. SEA subsystems are used to represent the source and receiving chambers of a TL test suite and an FE structural subsystem is used to represent the dash component. The potential advantages of the Hybrid FE-SEA method for this application are that: (i) it can provide detailed narrowband predictions of the radiation efficiency and TL of a given component across a broad frequency range and (ii) the computational cost of the approach is typically several orders of magnitude less than that of traditional low frequency FE/BEM/IEM methods. The approach is also potentially well suited to existing analysis processes since information from detailed component level models can be used to update and refine targets obtained from system level SEA models (the use of a common environment for such models simplifies model management).
Technical Paper

Using OCTO SOI nMOSFET to Handle High Current for Automotive Modules

2012-10-02
2012-36-0211
This paper presents an experimental comparative study between the OCTOGONAL-Gate Silicon-on-Insulator (SOI) nMOSFET (OSM) and the conventional SOI nMOSFET (CSM) considering the same bias conditions and the same gate area (AG), in order to verify the influence of this new MOSFET layout style to handle high current for automotive modules. Analog integrated circuits (ICs) design tends to be considered an art due to a large number of variables and objectives to achieve the product specifications. The designer has to find the right tradeoffs to achieve the desired automotive specification such as low power, low voltage, high speed and high current driver. SOI MOSFET's technology is required to provide the growth of embedded electronics. This growth is driving demand for power-handling devices that are smaller yet still provide high current driver capabilities.
Technical Paper

Use of Single Point Interface Measures for Characterization of Attachments

2005-05-16
2005-01-2388
Often components or subsystems are attached to other systems through multiple fasteners at multiple locations. Examples may include things like compressors, alternators, engine cradles, powertrain mounting systems, suspension systems, body structures or almost any other interface between components or subsystems. Often during early design stages, alternative component or subsystem configurations are being considered that can have very different interface characteristics, such as alternators with different number of mounting fasteners, or suspension systems with different number of body structure interface attachments. Given these different mounting configurations, it can be difficult to meaningfully compare the interface performance of the two components or subsystems.
Technical Paper

Un-Controlled Generation Modelling and Analysis for Hybrid Vehicles

2017-01-10
2017-26-0108
Interior permanent magnet machines are being widely used in hybrid vehicles owing to their compact size and high power density. Vehicle level application requires the motor to operate at high speed beyond the base speed of the motor. This is accomplished through flux weakening control. Nonfunctioning of inverter switches and/or gate driver circuit during flux weakening could give rise to a potential fault scenario called Un-Controlled Generation (UCG). This paper gives a detailed background of UCG and its impact on the high voltage and propulsion systems. In further sections the details related to modelling and analysis of UCG will be discussed. Finally, the paper will conclude with simulation results and comparison of the results with motor dynamometer test data.
Technical Paper

Trends in Bus Guardian for Automotive Communication - CAN, TTP/C and Flexray

2011-10-04
2011-36-0308
Safety critical systems are taking demands on automotive systems where the distributed embedded system needs a communication system with properties of fault tolerant real-time communication. In order to increase reliability of systems with serial communication, a device called bus guardian can be added on physical layer to perform management of schedules and data independently from the communication controller, monitoring timing and sending signals of bus status notifying error occurrences to the host. The goal of this paper is to present and perform a comparative analysis of different strategies of bus guardian used in CAN, TTP/C and Flexray protocols, applied in safety critical system in automobile domain. A comparison was carried out to describe the properties and application for each protocol.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

Time Determinism and Semantics Preservation in the Implementation of Distributed Functions over FlexRay

2010-04-12
2010-01-0452
Future automobiles are required to support an increasing number of complex, distributed functions such as active safety and X-by-wire. Because of safety concerns and the need to deliver correct designs in a short time, system properties should be verified in advance on function models, by simulation or model checking. To ensure that the properties still hold for the final deployed system, the implementation of the models into tasks and communication messages should preserve properties of the model, or in general, its semantics. FlexRay offers the possibility of deterministic communication and can be used to define distributed implementations that are provably equivalent to synchronous reactive models like those created from Simulink. However, the low level communication layers and the FlexRay schedule must be carefully designed to ensure the preservation of communication flows and functional outputs.
Video

The Utility and Fuel Consumption of Hybrid and Electric Vehicles

2012-03-27
There are now a wide variety of Hybrid and Electric Vehicles in or near production. They reduce or displace petroleum consumption with of various combinations of conventional IC engine, mechanical transmission, liquid fuel storage, electrical energy storage, electrical and electro-mechanical energy conversion, and vehicle-to-grid energy interface. These Electrified types of vehicles include Mild Hybrid, Full Hybrid, Plug-In Hybrid, Extended Range Electric, and Battery Electric. Some types differ in their actual usability for the real mixes of driving trips, and further that differ in their effectiveness to reduce or displace fuel in actual real world driving use. Vehicle size is also a factor in total vehicle utility in transporting people. If we may segment drivers by their driving needs, in each segment, we see a particular type of electrified vehicle that is better suited than others at minimizing fuel cost and petroleum consumption for the purposes of transporting people.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

2015-04-14
2015-01-1152
The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
Technical Paper

The Importance of Analysis of Electrical Parameters for Design of Analog Circuits in Automotive Modules

2012-10-02
2012-36-0209
The intention of this paper is to discuss the importance of analysis of some electrical parameters in order to design analog circuits in electronic modules, including automotive ones. Today, the challenge is to have devices which consume less power, high performance and higher integration density, so that it explains why such analysis is crucial to achieve better performances and meet the desired results.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

2006-04-03
2006-01-0472
It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Technical Paper

The Design Concept of the Duramax 6600 Diesel Engine

2001-11-12
2001-01-2703
A new Diesel engine, called the Duramax 6600 (Fig.1), has been designed by Isuzu Motors (Isuzu) for an upcoming full-size General Motors (GM) pickup truck. It incorporates the latest Diesel technology in order to improve on the inherent strengths of a Diesel engine, such as fuel economy, torque and reliability, while also producing higher output, smoother driveability, and lower noise. The Duramax 6600 is an entirely new 90° V8 direct injection (DI) intercooled engine with a water-cooled turbocharger. Its fuel injection system employs a fully electronically controlled common rail system that has high-pressure injection capabilities. Isuzu had the design responsibility of the base engine, while GM Truck Group was responsible for designing the installation and packaging within the vehicle. Engine validation relied on Isuzu's proven validation process, in addition to GM Powertrain's expertise in engine validation.
Journal Article

Tensile Deformation and Fracture of TRIP590 Steel from Digital Image Correlation

2010-04-12
2010-01-0444
Quasi-static tensile properties of TRIP590 steels from three different manufacturers were investigated using digital image correlation (DIC). The focus was on the post-uniform elongation behavior which can be very different for steels of the same grade owing to different manufacturing processes. Miniature tensile specimens, cut at 0°, 45°, and 90° relative to the rolling direction, were strained to failure in an instrumented tensile stage. True stress-true strain curves were computed from digital strain gages superimposed on digital images captured from one gage section surface during tensile deformation. Microstructural phases in undeformed and fracture specimens were identified with optical microscopy using the color tint etching process. Fracture surface analyses conducted with scanning electron microscopy and energy dispersive spectroscopy were used to investigate microvoids and inclusions in all materials.
Technical Paper

TECH 1 Interactive Diagnostic Tester

1986-08-01
861108
Automotive electronic systems are becoming increasingly complex and servicing these systems is difficult and costly. These same electronics, however, when coupled with interactive diagnostic testers can provide opportunities for not only self-diagnosis but also for significantly improved overall vehicle diagnostic testing. General Motors has established a three-tiered system of diagnostic testing with Level I testing accomplished by on-board diagnostics and Levels II and III employing external test equipment utilizing a high degree of interactive diagnostic testing. A low cost handheld diagnostic tester called the TECH 1 has been developed to support Level II testing of GM vehicles by technicians in dealerships and aftermarket service centers.
Technical Paper

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

2020-06-30
2020-37-0006
Over the last two decades, engine research was mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed by the author in [1]).
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
X