Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

2006-04-03
2006-01-0472
It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Technical Paper

The Design Concept of the Duramax 6600 Diesel Engine

2001-11-12
2001-01-2703
A new Diesel engine, called the Duramax 6600 (Fig.1), has been designed by Isuzu Motors (Isuzu) for an upcoming full-size General Motors (GM) pickup truck. It incorporates the latest Diesel technology in order to improve on the inherent strengths of a Diesel engine, such as fuel economy, torque and reliability, while also producing higher output, smoother driveability, and lower noise. The Duramax 6600 is an entirely new 90° V8 direct injection (DI) intercooled engine with a water-cooled turbocharger. Its fuel injection system employs a fully electronically controlled common rail system that has high-pressure injection capabilities. Isuzu had the design responsibility of the base engine, while GM Truck Group was responsible for designing the installation and packaging within the vehicle. Engine validation relied on Isuzu's proven validation process, in addition to GM Powertrain's expertise in engine validation.
Technical Paper

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

2020-06-30
2020-37-0006
Over the last two decades, engine research was mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed by the author in [1]).
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Technical Paper

Recycling Study of Post-Consumer Radiator End Caps

1999-03-01
1999-01-0666
In June 1997, the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC) asked MBA Polymers to conduct a study to determine the technical and economic feasibility of recovering metals and plastics from end-of-life radiator end caps (RECs). The VRP worked with the Institute of Scrap Recycling Industries (ISRI) to obtain samples of RECs from two metal recycling companies, SimsMetal America and Aaron Metals. MBA performed its standard Recyclability Assessment on the materials, which included a detailed density and material characterization study and an actual processing study using its pilot processing line. It was found that the polyamide from RECs could be recovered in reasonably high yield and purity using tight density separations. The recycling of the REC samples used for this study generated about 40% nonferrous metal, 19% mixed ferrous and nonferrous metal and about 20% polyamide flakes.
Technical Paper

Rapid Spherical Near-Field Antenna Measurements for Vehicle Applications

2005-04-11
2005-01-0569
As more wireless services such as satellite radio (SDARS), navigation systems, OnStar, and mobile telephones are installed on GM vehicles, there is a need to make quick and accurate vehicle antenna pattern measurements. The interaction between vehicle and antenna must be included to ensure accurate vehicle antenna measurements. This implies that the size of the effective antenna should include both the antenna and vehicle interaction dimensions. For the frequency range of 500 MHz to 6 GHz, one solution is to use a spherical near-field system. The Satimo rapid probe array technology was selected to develop a vehicle antenna test system (ATS), which minimizes test time and maintains data accuracy. The ATS was designed to operate inside of an existing GM electromagnetic compatibility (EMC) anechoic chamber equipped with a nine-meter turntable.
Technical Paper

Powertrain Mounting Robust Evaluation Methodology Utilizing Minimal Hardware Resources

2017-06-05
2017-01-1823
Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and evaluation over multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. The powertrain mounts typically contain natural materials. These properties have variation, resulting in a tolerance around the nominal specification and lead to differences in noise and vibration performance. A powertrain mounting system that is robust to this variation is desired. The design and development process requires evaluation of these mounts, within tolerance, to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system, a library of mounts that include the range of production variation is studied. However, this is time consuming.
Journal Article

Modeling and Analysis of a Turbocharged Diesel Engine with Variable Geometry Compressor System

2011-09-11
2011-24-0123
In order to increase the efficiency of automotive turbochargers at low speed without compromising the performance at maximum boost conditions, variable geometry compressor (VGC) systems, based on either variable inlet guide vanes or variable geometry diffusers, have been recently considered as a future design option for automotive turbochargers. This work presents a modeling, analysis and optimization study for a Diesel engine equipped with a variable geometry compressor that help understand the potentials of such technology and develop control algorithms for the VGC systems,. A cycle-averaged engine system model, validated on experimental data, is used to predict the most important variables characterizing the intake and exhaust systems (i.e., mass flow rates, pressures, temperatures) and engine performance (i.e., torque, BMEP, volumetric efficiency), in steady-state and transient conditions.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

Magnesium Powertrain Mount Brackets: New Application of Material Being used in this Sub-System for Vehicle Mass Reduction

2007-04-16
2007-01-1031
The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Innovation Flow and Metrics Essentials

2011-10-04
2011-36-0147
The innovation term has been so widely misused that the confusion observed among the companies trying to get themselves into the innovation realm is a common and natural consequence. The lack of understanding of the innovation dynamics, flow and metrics generally culminate in a non-well-thought implementation of innovation processes and policies that are usually tragic in the short term. The most common consequences are the loss of credibility of the innovation process in general among leaders and employees, and the loss of credibility of the company as an innovative company among suppliers, partners and customers, causing these companies to abandon this powerful tool and, as consequence, to limit their capabilities to compete in the future. In order to prevent this from happening, companies that were not built upon innovation will need to grow capability and change cultural priorities to match the demands of the innovation process.
Technical Paper

High Fuel Economy CIDI Engine for GM PNGV Program

2002-03-04
2002-01-1084
A compact, lightweight compression-ignition engine designed for high fuel economy and low emissions was developed by ISUZU for the GM PNGV vehicle. This engine was the key component in the selected parallel hybrid vehicle powertrain for the 80 mpg fuel economy target. The base hardware was derived from a 1.7 Liter, 4-cylinder engine, and a three-cylinder version was created for the PNGV application. To achieve the required high efficiency, the engine used lightweight components thus minimizing weight and friction. To reduce exhaust emissions, electromechanical actuators were used for EGR, intake throttle, and turbocharger. Through careful application of these devices and combustion development, stringent engine out exhaust emission targets were also met.
Technical Paper

HELS Based Acoustic Holographic Measurements to Evaluate Structure-Borne Noise

2007-05-15
2007-01-2281
General Motors (GM) recently purchased an acoustic holography system based on the Helmholtz Equation Least Squares (HELS) methodology. Typically acoustic holography has utilized planar transformation of the Fourier acoustic equations. General Motors conducted a variety of experiments on a simple well understood structure. This enabled us to understand the setup parameters and confirm the manufacturer's claims for accuracy. Measurements on the structure were taken using the HELS based equipment and a laser vibrometer. Conclusions are drawn on how to set up the equipment for future testing on vehicles.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

Front-end Cooling Airflow Performance Prediction Using Vehicle System Resistance

2003-03-03
2003-01-0273
The objective of this paper is to develop an analytical approach to compute cooling airflow at any particular fan and vehicle speed condition in a vehicle from a minimum number of CFD (Computational Fluid Dynamic) simulations or test runs using fan performance data. The vehicle system resistance is used with fan performance curves to find the cooling airflows of the vehicle. Fan performance curves at any fan speed are computed using fan laws and the CFD simulations are used in computing the system resistances at a particular vehicle speed. The paper outlines the prediction of system resistances at other vehicle speeds and its use in computing the cooling flows at those speeds. The approach is validated using CFD for different combinations of vehicle and fan speeds.
X