Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Weathering of Black Plastics for Automotive Exteriors

2003-03-03
2003-01-1191
Ten mold-in-color black polymers were evaluated for exterior weathering in an attempt to improve the specifications for exterior mold-in-color plastics to meet five year durability for a 95th percentile sunbelt customer. Four different weathering methods were utilized including Arizona exposure, Florida exposure, and Xenon arc exposures per the GMNA and the GM Europe methods. Colorfastness, gloss retention and other material property changes due to weathering were measured and analyzed against two GM durability standards. For the appearance attributes, correlations between actual exposure and accelerated exposure were attempted. Test results before and after polishing were also analyzed. Finally, in addition to comparing the performance of the ten polymers, the four weathering methods are compared and discussed with recommendations for the preferred testing regimen.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

The influence of forward up vision on driver visibility

2018-09-03
2018-36-0293
During the early phase of vehicle development, one of the key design attributes to consider is visibility for the driver. Visibility is the ability to see the surrounding environment as one is driving. This need should drive the vehicle design enabling a move favorable view for the driver. Certain vehicle characteristics such as the size of windshield and the design of the pillar influence the perception of visibility for the driver. One specific characteristic influencing satisfaction is forward up vision, which is the subject of this paper. The objective of this project was to analyze the influence of forward up vision on driver satisfaction under real world driving conditions. Other influences such as the positon of the occupant in the seat was also studied. This study was supported by research, statistical data analysis and dynamic clinics.
Technical Paper

The influence of A-pillar obscuration/location on driver visibility

2020-01-13
2019-36-0062
During the early phase of vehicle development, one of the key design attributes to consider is visibility for the driver. Visibility is the ability to see one’s surrounding environment while they are driving. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain vehicle characteristics such as the size of windshield and the design of the pillars influence the perception of visibility for the driver. One specific characteristic influencing satisfaction is A-pillar obscuration and location, which is the subject of this paper. The objective of this project is to analyze the relationship between the A-pillar obscuration/location with the driver satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics. Other influences, such as the position of the occupant in the seat was also studied and captured in this paper.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
Technical Paper

Experimental Characterization of the Unsteady Flow Field behind Two outside Rear View Mirrors

2008-04-14
2008-01-0476
The unsteady flow fields behind two different automobile outside side rear view mirrors were examined experimentally in order to obtain a comprehensive data base for the validation of the ongoing computational investigation effort to predict the aero-acoustic noise due to the outside rear view mirrors. This study is part of a larger scheme to predict the aero-acoustic noise due to various external components in vehicles. To aid with the characterization of this complex flow field, mean and unsteady surface pressure measurements were undertaken in the wake of two mirror models. Velocity measurements with particle image velocimetry were also conducted to develop the mean velocity field of the wake. Two full-scale mirror models with distinctive geometrical features were investigated.
Technical Paper

Discomfort Glare Ratings of Swiveling HID Headlamps

2004-05-10
2004-01-2257
Sixteen participants aged 55–65yrs provided deBoer scale ratings of discomfort glare for a vehicle with horizontally swiveling HID headlamps and a vehicle with the same headlamps that did not swivel in eight scenarios staged in a darkened parking lot. Participants, who were seated in the driver’s position of a stationary vehicle and instructed when to look, viewed the oncoming test vehicles in scenarios of 180m left turn, 180m right turn, 80m left turn, 80m right turn, left turn beside participant vehicle, crossing left in front of participant vehicle, right turn beside participant vehicle, and straightaway, in counterbalanced presentation orders. The swiveling headlamp vehicle provided statistically lower glare ratings in both 180m curves and the 80m right curve and statistically lower or similar in the intersection scenarios than the fixed headlamp vehicle.
Technical Paper

Differential Case Imbalance Calculation Using Monte Carlo Simulation

2023-04-11
2023-01-0025
A driveline differential gear housing or diff-case is the heaviest component of a driveline that rotates at high velocities. core shift during diff-case casting is a major source of imbalance as casting cores can never be placed at the exact intended location. Core shift in the present case is defined as combination of pure translation along the parting plane and tilting about two orthogonal axes. Given the ranges of variation of these shift parameters, large numbers of random sampling of these variations are generated through Monte Carlo method where normal distribution of each of the core shift parameters is assumed. Static unbalance values of the diff-case from each of the instances of core shift is calculated using Boolean operation in MSC Adams View and a nonlinear data set is created. Next, a statistical model is created based on a neutral network-based fitting method to appropriately represent the set.
Technical Paper

Development of an Electronically-Controlled, Limited-Slip Differential (eLSD) for FWD Applications

2007-04-16
2007-01-0925
Limited-slip differentials improve traction and handling when compared to open differentials, but offer no active modulation and can compromise typical driving. A number of passive control systems exist that attempt to reduce this compromise. Electronically controlled limited-slip differentials (eLSD) are being introduced that allow active control of the differential in all driving situations and can be operated as an open differential, a fully locked differential, or at any point between these extremes. Such an eLSD system was implemented in two General Motors front wheel drive cars-one on an automatic transmission and applied by the transmission pump, the other on a manual transmission and applied by an external pump. This eLSD system contains a multi-plate wet clutch connected to the differential carrier and right side half-shaft of an all wheel drive capable transmission.
Technical Paper

Brake Response Time Measurement for a HIL Vehicle Dynamics Simulator

2010-04-12
2010-01-0079
Vehicle dynamics simulation with Hardware In the Loop (HIL) has been demonstrated to reduce development and validation time for dynamic control systems. For dynamic control systems such as Anti-lock Braking System (ABS) and Electronic Stability Control (ESC), an accurate vehicle dynamics performance simulation system requires the Electronic Brake Control Module (EBCM) coupled with the vehicles brake system hardware. This kind of HIL simulation-specific software tool can further increase efficiency by means of automation and optimization of the development and validation process. This paper presents a method for HIL vehicle dynamics simulator optimization through Brake Response Time (BRT) correlation. The paper discusses the differences between the physical vehicle and the HIL vehicle dynamics simulator. The differences between the physical and virtual systems are used as factors in the development of a Design Of Experiment (DOE) quantifying HIL simulator performance.
Technical Paper

An Analytical Control Systems Approach to Steering Shudder

1995-05-01
951254
Historically, power steering shudder, a vibration which occurs while steering a vehicle at low speeds, has been approached with systematic component-swapping experiments. This approach was time consuming and did not necessarily yield satisfactory results. In this paper it is shown that steering shudder can be analytically approached as a control system with a closed-loop limit cycle caused by the interaction of the chassis and the steering system. This approach provides a metric for determining a vehicle's propensity to shudder and allows quick predictions of the results of changing components. The approach is model-based, and incorporates chassis and hydraulic system components. Results obtained from the control systems analysis have been validated by a vehicle study, which showed a strong correlation between subjective evaluations and the stability metric provided by the analysis.
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
X