Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel

2016-10-17
2016-01-2208
Gasoline Compression Ignition (GCI) engines using a low octane gasoline-like fuel (LOF) have good potential to achieve lower NOx and lower particulate matter emissions with higher fuel efficiency compared to the modern diesel compression ignition (CI) engines. In this work, we conduct a well-to-wheels (WTW) analysis of the greenhouse gas (GHG) emissions and energy use of the potential LOF GCI vehicle technology. A detailed linear programming (LP) model of the US Petroleum Administration for Defense District Region (PADD) III refinery system - which produces more than 50% of the US refined products - is modified to simulate the production of the LOF in petroleum refineries and provide product-specific energy efficiencies. Results show that the introduction of the LOF production in refineries reduces the throughput of the catalytic reforming unit and thus increases the refinery profit margins.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

The Impact of Pre-Chamber Design on Part Load Efficiency and Emissions of a Miller Cycle Light Duty Gasoline Engine

2021-04-06
2021-01-0479
The efficiency and emission potential of pre-chamber combustion in a Miller cycle light duty gasoline engine operated under part load was evaluated. Several pre-chamber designs that examine the engine performance tradeoffs with nozzle diameter, pre-chamber volume, number of nozzles, and pre-chamber fuel enrichment were investigated for both excess air and cooled external EGR dilution strategies. The introduction of pre-chamber jet ignition was observed to significantly reduce the main-chamber combustion duration while reducing cyclic variability under dilute conditions, benefiting from the long-reach ignition jets and enhanced turbulence. However, the pre-chamber design that provided the fastest combustion led to reduced brake efficiency primarily due to increased wall heat loss. Maintaining the total nozzle area while increasing the number of nozzles was identified as a means to minimize the additional heat loss and maintain fast burn rates.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

2006-04-03
2006-01-0472
It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Technical Paper

The Development and Implementation of an Engine Off Natural Vacuum Test for Diagnosing Small Leaks in Evaporative Emissions Systems

2003-03-03
2003-01-0719
This paper discusses an approach to detecting small leaks in an automobile's evaporative emissions systems that is a technique based upon ideal gas laws. It does this by monitoring pressure in the system while the vehicle's engine is off. This low cost solution can be easily implemented on General Motors vehicles using existing components. The topics covered in this paper include details on the background of the problem and the technique, the underlying thermodynamics of the technique, a description of the algorithm, testing and data collection considerations.
Technical Paper

The Design Concept of the Duramax 6600 Diesel Engine

2001-11-12
2001-01-2703
A new Diesel engine, called the Duramax 6600 (Fig.1), has been designed by Isuzu Motors (Isuzu) for an upcoming full-size General Motors (GM) pickup truck. It incorporates the latest Diesel technology in order to improve on the inherent strengths of a Diesel engine, such as fuel economy, torque and reliability, while also producing higher output, smoother driveability, and lower noise. The Duramax 6600 is an entirely new 90° V8 direct injection (DI) intercooled engine with a water-cooled turbocharger. Its fuel injection system employs a fully electronically controlled common rail system that has high-pressure injection capabilities. Isuzu had the design responsibility of the base engine, while GM Truck Group was responsible for designing the installation and packaging within the vehicle. Engine validation relied on Isuzu's proven validation process, in addition to GM Powertrain's expertise in engine validation.
Technical Paper

System-level 1-D Analysis to Investigate Variable Valve Actuation Benefits in a Heavy-Duty Gasoline Compression Ignition Engine

2020-04-14
2020-01-1130
In recent years gasoline compression ignition (GCI) has been shown to offer an attractive combination of low criteria pollutants and high efficiency. However, enabling GCI across the full engine load map poses several challenges. At high load, the promotion of partial premixing of air and fuel is challenging due to the diminished ignition-delay characteristics at high temperatures, while under low load operations, maintaining combustion robustness is problematic due to the low reactivity of gasoline. Variable valve actuation (VVA) offers a means of addressing these challenges by providing flexibility in effective compression ratio. In this paper, the effects of VVA were studied at high loads in a prototype heavy-duty GCI engine using a gasoline research octane number (RON) 93 at a geometric compression ratio (CR) of 15.7. Both late intake valve closing (LIVC) and early intake valve closing (EIVC) strategies were analyzed as a measure to reduce the effective compression ratio.
Technical Paper

System Level 1-D Analysis of an Air-System for a Heavy-Duty Gasoline Compression Ignition Engine

2019-04-02
2019-01-0240
A detailed study of various air system configurations has been conducted for a prototype gasoline compression ignition (GCI) engine using a Cummins MY2013 ISX15 heavy-duty diesel engine as the base platform. The study evaluated the configurations with the assumption that RON80 gasoline would be used as the fuel and the combustion chamber would have a geometric compression ratio (CR) of 16.5. Using 3-D computational fluid dynamics (CFD) simulations, a high efficiency & low engine-out NOx GCI combustion recipe was developed across the five engine operating points from the heavy-duty Supplemental Emissions Test (SET) cycle: A100, B25, B50, B75, and C100. The CFD generated air-thermal boundary conditions and the combustion burn-rate & injector rate-of-injection profiles were imported into a calibrated 1-D engine model for the air-handling systems analysis.
Technical Paper

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

2020-06-30
2020-37-0006
Over the last two decades, engine research was mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed by the author in [1]).
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Simulation-Guided Air System Design for a Low Reactivity Gasoline-Like Fuel under Partially-Premixed Combustion in a Heavy-Duty Diesel Engine

2017-03-28
2017-01-0751
In this study a detailed 1-D engine system model coupled with 3-D computational fluid dynamics (CFD) analysis was used to investigate the air system design requirements for a heavy duty diesel engine operating with low reactivity gasoline-like fuel (RON70) under partially premixed combustion (PPC) conditions. The production engine used as the baseline has a geometric compression ratio (CR) of 17.3 and the air system hardware consists of a 1-stage variable geometry turbine (VGT) with a high pressure exhaust gas recirculation (HP-EGR) loop. The analysis was conducted at six engine operating points selected from the heavy-duty supplemental emissions test (SET) cycle, i.e., A75, A100, B25, B50, B75, and C100. The engine-out NOx target was set at 1 g/hp-hr (1.34 g/kWh) to address a future hypothetical tailpipe NOx limit of 0.02 g/hp-hr (0.027 g/kWh) while an engine-out particulate matter (PM) target of 0.01 g/hp-hr (0.013 g/kWh) was selected to comply with existing EPA 2010 regulations.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

2018-04-03
2018-01-0191
Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
Technical Paper

Recycling Study of Post-Consumer Radiator End Caps

1999-03-01
1999-01-0666
In June 1997, the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC) asked MBA Polymers to conduct a study to determine the technical and economic feasibility of recovering metals and plastics from end-of-life radiator end caps (RECs). The VRP worked with the Institute of Scrap Recycling Industries (ISRI) to obtain samples of RECs from two metal recycling companies, SimsMetal America and Aaron Metals. MBA performed its standard Recyclability Assessment on the materials, which included a detailed density and material characterization study and an actual processing study using its pilot processing line. It was found that the polyamide from RECs could be recovered in reasonably high yield and purity using tight density separations. The recycling of the REC samples used for this study generated about 40% nonferrous metal, 19% mixed ferrous and nonferrous metal and about 20% polyamide flakes.
Video

Real time Renewable Energy Availability for EV Charging

2012-03-29
Main topics are the development and the build-up of an 18ton hybrid truck with a parallel hybrid drivetrain. With this truck it is possible to drive up to 3 kilometers in the pure electric driving mode. Presenter Andreas Eglseer, Engineering Center Steyr GmbH & Co. KG
Technical Paper

Preliminary Design of a Bio-Diesel Plug-in Hybrid Electric Vehicle as part of EcoCAR 2: Plugging-in to The Future

2012-09-10
2012-01-1770
With a growing need for a more efficient consumer based automotive platform, Embry-Riddle Aeronautical University (ERAU) chose to redesign the 2013 Chevrolet Malibu as a Plug-in Hybrid Electric Vehicle(PHEV). A Series architecture was chosen for its low energy consumption and high consumer acceptability when compared to the Series/Parallel-through-the-road and the Pre-Transmission designs. A fuel selection process was also completed and B20 Biodiesel was selected as the primary fuel due to lower GHG (Greenhouse Gases) emissions and Embry-Riddle's ability to produce biodiesel onsite using the cafeteria's discarded vegetable oil.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
X