Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

A Response Surface Based Tool for Evaluating Vehicle Performance in the Pedestrian Leg Impact Test

2008-04-14
2008-01-1244
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

A Study on the Camshaft Lobe Microstructure Obtained by Different Processing

2012-10-02
2012-36-0499
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
Technical Paper

Alternate Solution for EV Charge Point Infrastructure in Crowded Urban Areas along the Shore

2019-01-09
2019-26-0121
Many countries including India have aggressively aimed to implement electric vehicles (EVs) usage from 2030 onwards. Companies such as General Motors, Uber, Waymo and Nissan etc. are exploring the realm of autonomous vehicles (AV) for use as taxis as early as 2019. Above facts logically arrive at the solution of Autonomous EVs as taxis. With the commitment towards enabling an all-electric future, there exists a need to provide suitable infrastructure for recharging. Major urban cities located by the shoreline such as New York, Hong Kong, Mumbai, Los Angeles etc. have been facing the space crunch, with real estate prices sky-rocketing exponentially. With this premise, the operating company would need a large amount of space to store their EVs for charging which attributes to a longer downtime. This brings a need for an economical charging location that has a reduced usage of urban infrastructure and energy consumption.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Journal Article

Braking Systems for High Performance Electric Vehicles - A Design Study

2020-10-05
2020-01-1612
Any young person who has taken delight in playing with toy slot cars knows that the world of racing and the world of electric cars has been intertwined for a long time. And anyone who has driven a modern performance electric vehicle knows that the instant acceleration, exhilarating speeds, and joy of driving of slot cars is reflected in these full sized “toys”, with the many more practical benefits that come from being full-sized and steerable. There is strong foreshadowing of a vibrant future for performance cars in some of the EV’s on the market now and in the near future, some offering “ludicrous” acceleration, and others storied nameplates with performance to match. The ease at which powerful electric drives can capably hurtle a massive vehicle around the track at high speeds, combined with the potential for the same electric drives to exert powerful regenerative braking, creates a very interesting situation for brake engineers.
Technical Paper

Defining the General Motors 2-Mode Hybrid Transmission

2007-04-16
2007-01-0273
The new General Motors 2-Mode Hybrid transmission for full-size, full-utility SUVs integrates two electro-mechanical power-split operating modes with four fixed gear ratios and provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. A combination of two power-split modes reduces the amount of mechanical power that must be converted to electricity for continuously variable transmission operation. Four fixed gear ratios further improve power transmission capacity and efficiency for especially demanding maneuvers such as full acceleration, hill climbing, and towing. This paper explains the basics of electro-mechanical power-split transmissions, input-split and compound-split modes, and the addition of fixed gear ratios to these modes to create the 2-Mode Hybrid transmission for SUVs.
Technical Paper

Design and Development of a Roller Follower Hydraulic Lash Adjustor to Eliminate Lash Adjustment and Reduce Noise in a Serial Production Diesel Engine

2018-09-10
2018-01-1766
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems require significant space claim which makes vehicle packaging a challenge. Today’s diesel engines require valvetrain lash adjustment settings at distinct intervals to ensure proper valvetrain performance. This requires removing the engine rocker cover to access the valvetrain rocker arms for setting lash. Setting lash for compact vehicle applications sometimes requires removing the aftertreatment system to provide access to the rocker cover prior to setting lash. Then, the rocker cover is reinstalled followed by the aftertreatment system making the lash setting process time consuming and complex.
Technical Paper

Durability and Reliability Demonstration for Switching Roller Finger Follower in Cylinder Deactivation Systems

2015-09-29
2015-01-2816
Cylinder deactivation (CDA) is an effective method to adjust the engine displacement for maximum output and improve fuel economy by adjusting the number of active cylinders in combustion engines. A Switching Roller Finger Follower (SRFF) is an economic solution for CDA that minimizes changes and preserves the overall width, height, or length of Dual Overhead Cam (DOHC) engines. The CDA SRFF provides the flexibility of either transferring or suppressing the camshaft movement to the valves influencing the engine performance and fuel economy by reducing the pumping losses. This paper addresses the performance and durability of the CDA SRFF system to meet the reliability for gasoline passenger car engines. Extensive tests were conducted to demonstrate the dynamic stability at high engine speeds and the system capacity of switching between high and low engine displacement within one camshaft revolution.
Technical Paper

Eliminating Caliper Piston Knock Back In High Performance Vehicles

2006-10-08
2006-01-3197
Powerful vehicles that are adequately designed to corner at high speeds can generate very high lateral forces at tire-road interface. These forces are counter balanced by chassis, suspension and brake components allowing the vehicle to confidently maneuver around a corner. Although these components may not damage under such high cornering loads, elastic deflections can significantly alter a vehicles performance. One such phenomenon is increased brake pedal travel, to engage brakes, after severe cornering maneuvers. Authors of this paper have worked together to solve exactly this problem on a very powerful luxury segment car.
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

2016-10-25
2016-36-0360
The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
Technical Paper

Experimental Study of Aluminum Metal Foam Material on Heat Transfer Performance

2021-09-22
2021-26-0239
Electrification is one of the megatrends across the industries, like electric vehicles, electric aircraft, etc. which needs advancement in power electronics component technology. As technology advances in miniaturization of power electronics, thermal-management issues threaten to limit the performance of these devices. These may force designers to derate the device performance and ultimately these compromise in design may increase the size & weight of the application. One of the technologies capable of accomplishing these goals employs a class of materials know as metal foam. Metal foams are lightweight cellular materials inspired by nature. The main application of metal foams can be grouped into structural and functional and are based on several excellent properties of the material. Structural applications take advantage of the light-weight and specific mechanical properties of metal foam.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

High Fuel Economy CIDI Engine for GM PNGV Program

2002-03-04
2002-01-1084
A compact, lightweight compression-ignition engine designed for high fuel economy and low emissions was developed by ISUZU for the GM PNGV vehicle. This engine was the key component in the selected parallel hybrid vehicle powertrain for the 80 mpg fuel economy target. The base hardware was derived from a 1.7 Liter, 4-cylinder engine, and a three-cylinder version was created for the PNGV application. To achieve the required high efficiency, the engine used lightweight components thus minimizing weight and friction. To reduce exhaust emissions, electromechanical actuators were used for EGR, intake throttle, and turbocharger. Through careful application of these devices and combustion development, stringent engine out exhaust emission targets were also met.
Technical Paper

Improved Techniques in Intake Acoustic System Modeling of a Supercharged Engine

2017-06-05
2017-01-1790
Vehicle noise emission requirements are becoming more stringent each passing year. Pass-by noise requirement for passenger vehicles is now 74 dB (A) in some parts of the world. The common focus areas for noise treatment in the vehicle are primarily on three sub-systems i.e., engine compartment, exhaust systems and power train systems. Down- sizing and down- speeding of engines, without compromising on power output, has meant use of boosting technologies that have produced challenges in order to design low-noise intake systems which minimize losses and also meet today’s vehicle emission regulations. In a boosted system, there are a variety of potential noise sources in the intake system. Thus an understanding of the noise source strength in each component of the intake system is needed. One such boosting system consists of Turbo-Super configuration with various components, including an air box, supercharger, an outlet manifold, and an intercooler.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
X