Refine Your Search

Topic

Author

Search Results

Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1989

1989-02-01
890299
The detection range of an air-fuel ratio sensor is expanded in the rich A/F region. Using a simulation technique, the limiting cause of the detection range in the rich A/F region is identified as insufficient combustion rates of CO and H2 with O2 on the electrode, which prevent realization of a limited diffusion state which is necessary to detect the air-fuel ratio. Applying an improved diffusion layer to decrease the diffusion rates and an improved electrode to increase the combustion rates, it is demonstrated that the detection limit can be expanded to λ=0.6 while that of a conventional sensor is λ=0.8.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1986

1986-02-01
860409
The oxygen ion conductive solid electrolyte cell served as a device for measuring the combustibles content and the oxygen content of an exhaust gas. The cell is comprised of a tubular electrolyte, two opposed electrodes and a porous diffusion layer located on the outer electrode surface. The sensor is employed to measure both rich and lean air fuel ratio through the use of an electronic circuit pumping the oxygen ions to achieve a constant voltage between the electrodes. The wide range detecting capability makes it particularly attractive for air fuel ratio control applications associated with the internal combustion engine. The result of the performance tests are as follows, Detecting range (air excess ratio λ) : 0.8 - “∞ Step response time constant (63%) : 200ms Warm up time. - less than 80 sec at 20°C We found in the durability test concerned with the heat cycle and contamination that if initial aging treatment is applied the output variation ratio (. λ/λ) is limited with in : 5%.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Video

Real time Renewable Energy Availability for EV Charging

2012-03-29
Main topics are the development and the build-up of an 18ton hybrid truck with a parallel hybrid drivetrain. With this truck it is possible to drive up to 3 kilometers in the pure electric driving mode. Presenter Andreas Eglseer, Engineering Center Steyr GmbH & Co. KG
Technical Paper

Real Time Control for Fuel Injection System with Compensating Cylinder-by-Cylinder Deviation

1990-02-01
900778
We have examined a new precise control method of the air fuel ratio during a transient state which provides improved exhaust characteristics of automobile engines. We investigated the measurement method for the mass of fresh air inducted by the cylinder, which is most important for controlling the air fuel ratio. The mass of fresh air must be measured in real time because it changes in each cycle during a transient state. With an conventional systems, it has been difficult to get accurate measurement of this rapidly changing mass of fresh air. The method we studied measures the mass of fresh air by using the intake manifold pressure and air flow sensors. During a transient state, the reverse flow of the residual gas from the cylinder into the intake manifold, which occurs at the first stage of the suction stroke, changes with each cycle. The mass of fresh air changes accordingly.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

NOx Conversion Properties of a Mixed Oxide Type Lean NOx Catalyst

2000-03-06
2000-01-1197
Development is proceeding on catalysts which separate the NOx in lean exhaust gas by adsorption and then reduce the adsorbed NOx in combustion exhaust gas with the stoichiometric or a slightly richer air fuel ratio, as well as exhaust conversion technology that uses these catalysts. Amidst this research it has been found that catalysts containing mixed metal oxides exhibit superior NOx adsorption performance, so the authors prepared a mixed metal oxide catalyst by adding precious metals and promoters, etc. The resulting catalyst has high heat resistance and also offers excellent SOx durability. These properties were presumed to be due to an adsorbent including the mixed metal oxide, and the relation between the physical properties and NOx conversion properties of the catalyst was investigated.
Technical Paper

Multi-Swirl Type Injector for Port Fuel Injection Gasoline Engines

2014-04-01
2014-01-1436
The authors developed a multi-swirl type injector characterized by a short spray penetration length and fine atomization to improve exhaust emissions and fuel consumption for port fuel injection (PFI) gasoline engines. In PFI gasoline engines, fuel adhesion to an intake manifold causes exhaust emission. In addition, good mixing of fuel and air causes high combustion efficiency, and as a result the fuel consumption improves. Injectors therefore require two improvements: first, a short spray penetration to avoid fuel adhesion to the intake manifold, and second, a fine atomization spray to generate a good mixture formation of fuel and air. In this study, the authors developed a multi-swirl type injector equipped with multiple orifice holes featuring swirl chambers upstream of each orifice. The key feature of the proposed injector is “involute curve-formed swirl chambers” for generating a uniform thin liquid-film in the orifices.
Technical Paper

Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion – Part I: Metal Engine Results

2009-04-20
2009-01-1105
This study utilized a 4-valve engine under HCCI combustion conditions. Each side of the split intake port was fed independently with different temperatures and reactant compositions. Therefore, two stratification approaches were enabled: thermal stratification and compositional stratification. Argon was used as a diluent to achieve higher temperatures and stratify the in-cylinder temperature indirectly via a stratification of the ratio of specific heats (γ = cp/cv). Tests covered five operating conditions (including two values of A/F and two loads) and four stratification cases (including one homogeneous and three with varied temperature and composition). Stratifications of the reactants were expected to affect the combustion control and upper load limit through the combustion phasing and duration, respectively. The two approaches to stratification both affect thermal unmixedness. Since argon has a high γ, it reached higher temperatures through the compression stroke [1].
Technical Paper

Investigation of a Detecting Technology of Combustion Conditions Using the Ion-Current Sensor

2015-09-01
2015-01-1983
In previous study, a method of combustion detection for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated [1]. In addition, an ion-current sensor has been used as a countermeasure against abnormal combustion with downsizing and higher compression ratio engines. An ion-current sensor has been newly adopted in engine systems. In this study, detection performance of combustion conditions in HCCI and spark ignition (SI) using with the ion-current sensor was estimated. The purpose of this study was to confirm detectable combustion conditions using with the ion-current sensor, and to confirm a requirement of applied voltage for the ion-current sensor. A detection signal of the ion-current sensor was changed by combustion style (HCCI,SI). Experimental results showed a heat release rate increased with ion signals increasing approximately at the same time in HCCI and SI.
Technical Paper

Investigation of Robustness Control for Practical Use of Gasoline HCCI Engine- An Investigation of a Detecting Technology of Conditions of HCCI Using an Ion Current Sensor -

2014-04-01
2014-01-1279
The robustness control for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated. On the other hand, an ion current sensor is used as a countermeasure against abnormal combustion with downsized and higher compression ratio engines. This sensor can generally be adopted in engine systems. Therefore, we examined the application of an ion current sensor to robustness control for HCCI. The purpose of this research was to develop a method of detecting combustion conditions to make HCCI engines more robust. Therefore, we evaluated the performance of the ion current sensor. Experimental results comparing ion intensity detection in HCCI. The detection value of the ion current sensor changed based on the form of combustion. Experimental results showed that the heat release rate increased with an increase in ion signals appear during the same time at approximately in both spark ignition (SI) and HCCI.
Technical Paper

Internal and Near-Nozzle Flow in a Multi-Hole Gasoline Injector Under Flashing and Non-Flashing Conditions

2015-04-14
2015-01-0944
A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
Technical Paper

Individual Cylinder Control for Air-Fuel Ratio Cylinder Imbalance

2015-04-14
2015-01-1624
Recently emissions regulations are being strengthened. An air-fuel ratio cylinder imbalance causes emissions to increase due to universal exhaust gas oxygen (UEGO) sensor error or exhaust gas oxygen (EGO) sensor error. Various methods of reducing an air-fuel ratio cylinder imbalance have been developed. It is preferable for a control system to operate over a wide range of conditions. Our target is to expand the operating conditions from idling to high load conditions. Our approach is to use both an UEGO sensor and a crank angle sensor. A two-revolution frequency component calculated from the UEGO sensor output signal and angular acceleration calculated from the crank angle sensor output signal are used to identify the cylinder where the air-fuel ratio error occurs.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Improved Thermal Efficiency Using Hydrous Ethanol Reforming in SI Engines

2013-09-08
2013-24-0118
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine.
Technical Paper

High Fuel Economy CIDI Engine for GM PNGV Program

2002-03-04
2002-01-1084
A compact, lightweight compression-ignition engine designed for high fuel economy and low emissions was developed by ISUZU for the GM PNGV vehicle. This engine was the key component in the selected parallel hybrid vehicle powertrain for the 80 mpg fuel economy target. The base hardware was derived from a 1.7 Liter, 4-cylinder engine, and a three-cylinder version was created for the PNGV application. To achieve the required high efficiency, the engine used lightweight components thus minimizing weight and friction. To reduce exhaust emissions, electromechanical actuators were used for EGR, intake throttle, and turbocharger. Through careful application of these devices and combustion development, stringent engine out exhaust emission targets were also met.
Technical Paper

Gasoline Engine Oil Specifications, Past, Present and Global

2009-11-02
2009-01-2664
Engine oil specifications have been changing since the invention of the automobile and the internal combustion engine. The industry associations that have played a key role in engine oil specification development have changed or evolved in fairly regular time intervals. The specifications, the tests behind the specifications, and the groups involved in shaping the specifications are discussed from a historical and present day perspective.
X