Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Validation and Application of the 3-D CAD Manikin RAMSIS in Automotive Design

1999-03-01
1999-01-1270
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation. At GM NAO, the model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. At GM/SAAB the model’s postural discomfort predictability was evaluated. Changes in postural discomfort predictions of the RAMSIS manikins were compared to that of the human subjects when they evaluated two different driving buck conditions. We concluded that RAMSIS has good position, posture and postural discomfort prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Thyristor Chopper Equipment Controlled by Magnetic Phase Shifter for Battery Forklift

1979-02-01
790896
Magnetic Phase Shifter is the controlling element to make integral action, excellent in anti-noise performance and makes high stable and reliable controlling device. (1)* We have developed a new compact thyristor chopper equipment controlled by Magnetic Phase Shifter. This equipment has simple controlling circuit and many functions such as wide range duty factor control, adjustable plugging brake, speed up by field weakening, anti-rollback control and so on.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Journal Article

Prediction of Vehicle Interior Noise from a Power Steering Pump using Component CAE and Measured Noise Transfer Functions of the Vehicle

2010-04-12
2010-01-0509
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
Technical Paper

Posture and Position Validation of the 3-D CAD Manikin RAMSIS for Use in Automotive Design at General Motors

1999-05-18
1999-01-1899
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation at General Motors (GM). The model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. We concluded that RAMSIS has good position and posture prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Innovation Flow and Metrics Essentials

2011-10-04
2011-36-0147
The innovation term has been so widely misused that the confusion observed among the companies trying to get themselves into the innovation realm is a common and natural consequence. The lack of understanding of the innovation dynamics, flow and metrics generally culminate in a non-well-thought implementation of innovation processes and policies that are usually tragic in the short term. The most common consequences are the loss of credibility of the innovation process in general among leaders and employees, and the loss of credibility of the company as an innovative company among suppliers, partners and customers, causing these companies to abandon this powerful tool and, as consequence, to limit their capabilities to compete in the future. In order to prevent this from happening, companies that were not built upon innovation will need to grow capability and change cultural priorities to match the demands of the innovation process.
Technical Paper

Controller Grid: Real-Time Load Balancing of Distributed Embedded Systems

2007-04-16
2007-01-1615
The concept of a “controller grid”, which makes effective use of computational resources distributed on a network while guaranteeing real-time operation, is proposed and applied to realize highly advanced control. It facilitates the total optimization of a plant control and achieves the high efficiency that is not acquired by individual plant optimization. To realize this concept, migration of a control task customized to be executed on one particular microcontroller to another microcontroller is necessary while strictly observing the required response time. Two techniques to meet this requirement are proposed: “task migration” for a control system and “real-time guaranteed scheduling of task migration and execution”. The effectiveness of the controller grid is assessed by applying it in experiments with electronic-throttle-body (ETB) advanced control.
Technical Paper

Application of Model Checking to Automotive Control Software with Slicing Technique

2013-04-08
2013-01-0436
To detect difficult-to-find defects in automotive control systems, we have proposed a modeling method with a program slicing technique. In this method, a verifier adjusts the boundaries of source code to be extracted on a variable dependence graph, in a kind of data flow. We have developed software tools for this method and achieved a 35% decrease in total verification time on model checking. This paper provides some consideration on effective cases of the method from verification practices. There are two types of malfunction causes: one is the timing of processes (race conditions), and the other is complex logics. Each type requires different elements in external environment models. Furthermore, we propose regression verification based on the modeling method above, to further reduce verification time on model checking. The paper outlines tool extensions needed to realize regression verification.
X