Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Using OCTO SOI nMOSFET to Handle High Current for Automotive Modules

2012-10-02
2012-36-0211
This paper presents an experimental comparative study between the OCTOGONAL-Gate Silicon-on-Insulator (SOI) nMOSFET (OSM) and the conventional SOI nMOSFET (CSM) considering the same bias conditions and the same gate area (AG), in order to verify the influence of this new MOSFET layout style to handle high current for automotive modules. Analog integrated circuits (ICs) design tends to be considered an art due to a large number of variables and objectives to achieve the product specifications. The designer has to find the right tradeoffs to achieve the desired automotive specification such as low power, low voltage, high speed and high current driver. SOI MOSFET's technology is required to provide the growth of embedded electronics. This growth is driving demand for power-handling devices that are smaller yet still provide high current driver capabilities.
Technical Paper

Un-Controlled Generation Modelling and Analysis for Hybrid Vehicles

2017-01-10
2017-26-0108
Interior permanent magnet machines are being widely used in hybrid vehicles owing to their compact size and high power density. Vehicle level application requires the motor to operate at high speed beyond the base speed of the motor. This is accomplished through flux weakening control. Nonfunctioning of inverter switches and/or gate driver circuit during flux weakening could give rise to a potential fault scenario called Un-Controlled Generation (UCG). This paper gives a detailed background of UCG and its impact on the high voltage and propulsion systems. In further sections the details related to modelling and analysis of UCG will be discussed. Finally, the paper will conclude with simulation results and comparison of the results with motor dynamometer test data.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

The influence of forward up vision on driver visibility

2018-09-03
2018-36-0293
During the early phase of vehicle development, one of the key design attributes to consider is visibility for the driver. Visibility is the ability to see the surrounding environment as one is driving. This need should drive the vehicle design enabling a move favorable view for the driver. Certain vehicle characteristics such as the size of windshield and the design of the pillar influence the perception of visibility for the driver. One specific characteristic influencing satisfaction is forward up vision, which is the subject of this paper. The objective of this project was to analyze the influence of forward up vision on driver satisfaction under real world driving conditions. Other influences such as the positon of the occupant in the seat was also studied. This study was supported by research, statistical data analysis and dynamic clinics.
Technical Paper

The influence of A-pillar obscuration/location on driver visibility

2020-01-13
2019-36-0062
During the early phase of vehicle development, one of the key design attributes to consider is visibility for the driver. Visibility is the ability to see one’s surrounding environment while they are driving. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain vehicle characteristics such as the size of windshield and the design of the pillars influence the perception of visibility for the driver. One specific characteristic influencing satisfaction is A-pillar obscuration and location, which is the subject of this paper. The objective of this project is to analyze the relationship between the A-pillar obscuration/location with the driver satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics. Other influences, such as the position of the occupant in the seat was also studied and captured in this paper.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Sound Analysis Method for Warble Noise in Electric Actuators

2019-06-05
2019-01-1521
Multiple automotive applications exist for small electric motors that are activated by vehicle occupants for various functions such as window lifts and seat adjusters. For such a motor to be described as high quality, not only should the sound it produces be low in amplitude, but it also needs to be free from pulsations and variations that might occur during its (otherwise) steady-state operation. If a motor’s sound contains pulsations or variations between 2 and 8 cycles per second, the variation is described as warble. To establish performance targets for warble noise at both the vehicle and component level a way to measure and quantify the warble noise must be established. Building on existing sound quality metrics such as loudness and pitch variation, a method is established by which processed sound data is put through a secondary operation of Fourier analysis.
Technical Paper

Simulation applied to compaction process in sintered components for product performance optimization

2024-01-08
2023-36-0011
Sintered parts mechanical properties are very sensitive to final density, which inevitable cause an enormous density gradient in the green part coming from the compaction process strategy. The current experimental method to assess green density occurs mainly in set up by cutting the green parts in pieces and measuring its average density in a balance using Archimedes principle. Simulation is the more accurate method to verify gradient density and the main benefit would be the correlation with the critical region in terms of stresses obtained by FEA and try to pursue the optimization process. This paper shows a case study of a part that had your fatigue limit improved 1000% using compaction process simulation for better optimization.
Technical Paper

Radio Usage: Observations from the 100-Car Naturalistic Driving Study

2007-04-16
2007-01-0441
This paper discusses radio usage habits observed during analysis of 700 hours of video sampled from the 100-Car Naturalistic Driving Study database. Analysts used large-scale printouts of each vehicle's radio faceplate and recorded interactions based on video analysis of hand movement and location (without the assistance of audio recordings). The duration and specific manipulations or adjustments were recorded for each interaction. The results summarize the length and type of interactions, most often-used controls, and total percentage of time drivers interacted with the radio.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Powertrain Mounting Robust Evaluation Methodology Utilizing Minimal Hardware Resources

2017-06-05
2017-01-1823
Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and evaluation over multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. The powertrain mounts typically contain natural materials. These properties have variation, resulting in a tolerance around the nominal specification and lead to differences in noise and vibration performance. A powertrain mounting system that is robust to this variation is desired. The design and development process requires evaluation of these mounts, within tolerance, to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system, a library of mounts that include the range of production variation is studied. However, this is time consuming.
Technical Paper

Planetary Carrier Staking Groove Optimization

2019-01-09
2019-26-0239
Simple planetary gears are widely used in automobile industry due to their compact design and high power density. A simple planetary gear set consists of a Sun gear, Ring gear, Planets and Carrier which houses planet gears. Mounting of planet pinions on carrier is through pins which is supported on needle roller bearings. A process called staking is used to assemble the pinion pins on to the carrier. Pinion pins have a staking region which after assembly expands outward into staking groove on the carrier to prevent axial movement of the pins. Design of the groove plays a vital role for the fixation of planet pins and robustness a carrier. Planetary carrier staking grooves are designed to meet pinion pin retention and strength targets.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Multi-Material Topology Optimization and Multi-Material Selection in Design

2019-04-02
2019-01-0843
As automakers continue to develop new lightweight vehicles, the application of multi-material parts, assemblies and systems is needed to enhance overall performance and safety of new and emerging architectures. To achieve these goals conventional material selection and design strategies may be employed, such as standard material performance indices or full-combinatorial substitution studies. While these detailed processes exist, they often succeed at only suggesting one material per component, and cannot consider a clean-slate design; here, multi-material topology optimization (MMTO) is suggested as an effective computational tool for performing large-scale combined multi-material selection and design. Unlike previous manual methods, MMTO provides an efficient method for simultaneously determining material existence and distribution within a predefined design domain from a library of material options.
Journal Article

Modeling and Analysis of a Turbocharged Diesel Engine with Variable Geometry Compressor System

2011-09-11
2011-24-0123
In order to increase the efficiency of automotive turbochargers at low speed without compromising the performance at maximum boost conditions, variable geometry compressor (VGC) systems, based on either variable inlet guide vanes or variable geometry diffusers, have been recently considered as a future design option for automotive turbochargers. This work presents a modeling, analysis and optimization study for a Diesel engine equipped with a variable geometry compressor that help understand the potentials of such technology and develop control algorithms for the VGC systems,. A cycle-averaged engine system model, validated on experimental data, is used to predict the most important variables characterizing the intake and exhaust systems (i.e., mass flow rates, pressures, temperatures) and engine performance (i.e., torque, BMEP, volumetric efficiency), in steady-state and transient conditions.
X