Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparative Analysis of Large Data Transfer in Automotive Applications Using Ethernet Switched Networks

2019-01-09
2019-26-0022
Automotive radars and cameras form the backbone of self-driving cars, Active safety and Advanced Driver Assistant Systems (ADASs). Streaming sensor, camera and audio data between sensors and Electronic control units(ECUs) requires huge data exchange. Ethernet with its large bandwidth capability is typically used as physical medium to communicate large data in automotive in-vehicle networks. Large data generally deals with payload size greater than single Ethernet Maximum Transmission Unit(MTU) size i.e.1522 Bytes that shall be sent via the transport protocol of the underlying bus. The purpose of the paper is to compare four different methods for transferring large data for current automotive Ethernet requirements. The methods Udp/Ip Fragmentation, Application fragmentation, Tcp/Ip Fragmentation and IEEE1722 transport protocol are evaluated. Bench evaluation of these methods are performed using Vector/Elektrobit software.
Technical Paper

An AUTOSAR Based Approach to Time Synchronize In-Vehicle ECUs in Mixed Network Architecture

2019-01-09
2019-26-0010
Time-critical applications in automotive are distributed across multiple Electronic control units (ECUs) that are connected through different in-vehicle networks. The ECUs on network protocols (CAN, Ethernet, FlexRay) operating at different source clocks needs to be synchronized to achieve time sensitive functionalities. Currently CAN and Ethernet have their own synchronization mechanisms. In a mixed architecture, challenge is to synchronize nodes on different protocols connected via gateway. AUTOSAR describes concept called Time gateway for such applications. This paper describes how time gateway can be configured for synchronizing nodes on CAN and Ethernet Networks. The approach is evaluated using bench simulation configured through Vector/Elektrobit software. The outcome of the method is to measure accuracy of synchronization between two nodes.
X