Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Weathering of Black Plastics for Automotive Exteriors

2003-03-03
2003-01-1191
Ten mold-in-color black polymers were evaluated for exterior weathering in an attempt to improve the specifications for exterior mold-in-color plastics to meet five year durability for a 95th percentile sunbelt customer. Four different weathering methods were utilized including Arizona exposure, Florida exposure, and Xenon arc exposures per the GMNA and the GM Europe methods. Colorfastness, gloss retention and other material property changes due to weathering were measured and analyzed against two GM durability standards. For the appearance attributes, correlations between actual exposure and accelerated exposure were attempted. Test results before and after polishing were also analyzed. Finally, in addition to comparing the performance of the ten polymers, the four weathering methods are compared and discussed with recommendations for the preferred testing regimen.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Use of Single Point Interface Measures for Characterization of Attachments

2005-05-16
2005-01-2388
Often components or subsystems are attached to other systems through multiple fasteners at multiple locations. Examples may include things like compressors, alternators, engine cradles, powertrain mounting systems, suspension systems, body structures or almost any other interface between components or subsystems. Often during early design stages, alternative component or subsystem configurations are being considered that can have very different interface characteristics, such as alternators with different number of mounting fasteners, or suspension systems with different number of body structure interface attachments. Given these different mounting configurations, it can be difficult to meaningfully compare the interface performance of the two components or subsystems.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

The Use of Subjective Jury Evaluations for Interior Acoustic Packaging

2003-05-05
2003-01-1506
Unweighted dB, dB(A), and Articulation Index do not always accurately identify the sound quality of vehicle interior noise. This paper attempts to determine the relevance of sound quality in interior automotive acoustics. Traditionally, overall dB(A) levels have been the driving factor, along with cost, in selecting an interior automotive acoustic package. In this paper, we make use of subjective jury evaluations to compare perceptions of various interior acoustic packages and compare these results to objective values. These values include, but are not restricted to, dB, dB(A), and Articulation Index. Considerations are made as to whether differences between packages can be perceived by customers. This paper also attempts to show that subjective evaluations can differ with the standard metrics used to select acoustic packages and describe why such evaluations might be important in acoustic package selection.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

The Importance of Analysis of Electrical Parameters for Design of Analog Circuits in Automotive Modules

2012-10-02
2012-36-0209
The intention of this paper is to discuss the importance of analysis of some electrical parameters in order to design analog circuits in electronic modules, including automotive ones. Today, the challenge is to have devices which consume less power, high performance and higher integration density, so that it explains why such analysis is crucial to achieve better performances and meet the desired results.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

The Development of a Sound Quality-Based End-of-Line Inspection System for Powered Seat Adjusters

2001-03-05
2001-01-0040
In recent years, the perceived quality of powered seat adjusters based on their sound during operation has become a primary concern for vehicle and seat manufacturers. Historical noise targets based on overall dB(A) at the occupant's ear have consistently proved inadequate as a measure of the sound quality of a seat adjuster. Significant effort has been devoted to develop alternative sound quality metrics that can truly discriminate between “good” and “bad” seat adjusters. These new metrics have been successfully applied for some years by product development engineers in test labs. However, in the assembly plant the sound quality of the seat adjuster is still assessed subjectively by an operator at the end of the assembly line. The main problem with this approach is not only the lack of consistency and repeatability across large samples of seat tracks, but also the fact that the only feedback provided from the end-of-line to the product development team is of subjective nature.
Journal Article

Tensile Deformation and Fracture of TRIP590 Steel from Digital Image Correlation

2010-04-12
2010-01-0444
Quasi-static tensile properties of TRIP590 steels from three different manufacturers were investigated using digital image correlation (DIC). The focus was on the post-uniform elongation behavior which can be very different for steels of the same grade owing to different manufacturing processes. Miniature tensile specimens, cut at 0°, 45°, and 90° relative to the rolling direction, were strained to failure in an instrumented tensile stage. True stress-true strain curves were computed from digital strain gages superimposed on digital images captured from one gage section surface during tensile deformation. Microstructural phases in undeformed and fracture specimens were identified with optical microscopy using the color tint etching process. Fracture surface analyses conducted with scanning electron microscopy and energy dispersive spectroscopy were used to investigate microvoids and inclusions in all materials.
Technical Paper

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

2020-06-30
2020-37-0006
Over the last two decades, engine research was mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed by the author in [1]).
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Simulation applied to compaction process in sintered components for product performance optimization

2024-01-08
2023-36-0011
Sintered parts mechanical properties are very sensitive to final density, which inevitable cause an enormous density gradient in the green part coming from the compaction process strategy. The current experimental method to assess green density occurs mainly in set up by cutting the green parts in pieces and measuring its average density in a balance using Archimedes principle. Simulation is the more accurate method to verify gradient density and the main benefit would be the correlation with the critical region in terms of stresses obtained by FEA and try to pursue the optimization process. This paper shows a case study of a part that had your fatigue limit improved 1000% using compaction process simulation for better optimization.
Technical Paper

Simulation and Identification of the Neck Muscle Activities During Head and Neck Flexion Whiplash

2002-03-04
2002-01-0017
A previously developed finite element human head/cervical spine model was further enhanced to include the major muscles in the neck. The head/cervical spine model consists of the skull, C1-C7, disks, facets, and all the ligaments in this region. The vertebral bodies are simulated by deformable bodies and the soft tissues in the cervical spine are modeled by nonlinear anisotropic viscoelastic material. The motion segments in the cervical spine model were validated against three-dimensional cadaver test data reported in the literature. To simulate the passive and active muscle properties, the classical Hill muscle model was implemented in the LS-DYNA code and model parameters were based on measurements of cadaver neck musculature. The head/neck model was used to simulate a human volunteer flexion whiplash test reported in the literature. Simulation results showed that the neck muscle contraction and relaxation activities had a significant effect on the head/neck motion.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Simplified Approach for Formability Simulation of Automotive Body Structures

2001-10-16
2001-01-3048
This paper presents a simplified approach for formability simulation of automotive body structural sections in the early design stage of vehicle development process. Plane strain approach is investigated for its applicability and accuracy by comparing the analytical results with the measured results of automotive body side panel. The plane strain approach was tried based on the fact that for a certain section location of a stamped panel, the minor strains are relatively small and negligible compared to the major strains. The state of plane strain can be induced mainly through symmetry and applied boundary conditions. This approach is both cost effective and time saving for analyzing sheet metal formability in early vehicle development stage, since only few sections of the entire panel need be analyzed.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Technical Paper

Reducing Background Noise Levels in Plant SQ Test Booths

2007-05-15
2007-01-2383
As customer awareness of product sound grows, the need exists to ensure that product sound quality is maintained in the manufacturing process. To this end in-process controls that employ a variety of traditional acoustical and alternate sound quality metrics are utilized, usually partly or wholly housed in a test enclosure. Often times these test cells are required to attenuate the background noise in the manufacturing facility so that the device under test can be accurately assessed. While design guidelines exist the mere size and cost of such booths make an iterative build and test approach costly in terms of materials as well as engineering and testing time. In order to expedite the design process and minimize the number of confirmation prototypes, SEA can be utilized to predict the transmission loss based upon material selection and booth construction techniques.
X