Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Vehicle Paint Radiation Properties and Affect on Vehicle Soak Temperature, Climate Control System Load, and Fuel Economy

2005-04-11
2005-01-1880
Vehicle thermal loads in sunny climates are strongly influenced by the absorption of solar thermal energy. Reduction of the absorptivity in the near infrared (IR) spectrum would decrease vehicle soak temperatures, reduce air conditioning power consumption and not affect the vehicle visible spectrum radiation properties (color). The literature [1] indicates that paint formulations with carbon-black pigment removed or reduced can be made to be reflective to near infrared frequencies. Experiments indicated that the reflectivity can be improved with existing basecoats and primers. Experiments and numerical simulations indicate that vehicle soak temperatures can be reduced by over 2 °C with existing basecoats and primers.
Technical Paper

Vehicle Dynamic Handling Computer Simulation - Model Development, Correlation, and Application Using ADAMS

1986-03-01
860574
A new capability to simulate transient, non-linear handling maneuvers analytically, and dynamically display the vehicle's response with 3-dimensional animated graphics has been developed and is being utilized by Ford Motor Company. The implementation of this capability, which includes complete affects of steering and suspension kinematics, individual bushing compliances, non-linear shock absorber and jounce bumper characteristics, and transient tire force and moment data, represents a new frontier in the development of light truck and passenger car vehicles. Development of this model lends itself to analytical evaluations of numerous types of handling related maneuvers such as classical or linear behavior, transient and limit stability analysis, and special situations such as cross wind stability, torque steer, and vehicle drift characteristics.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

Transient CFD Simulations of a Bell Sprayer

1998-09-29
982291
A methodology is developed that incorporates high resolution CFD flowfield information and a particle trajectory simulation, aimed at addressing Paint Transfer Efficiency (PTE) for bell sprayers. Given a solid model for the bell sprayer, the CFD simulation, through automeshing, determines a high resolution Cartesian volume mesh (14-20 million cells). With specified values of the initial shaping air, transient and steady-state flow field information is obtained. A particle trajectory visualization tool called SpraySIM uses this complicated flowfield information to determine the particle trajectories of the paint particles under the influence of drag, gravity and electrostatic potential. The sensitivity of PTE on shaping air velocity, charge-to-mass ratio, potential, and particle diameter are examined.
Technical Paper

Time Determinism and Semantics Preservation in the Implementation of Distributed Functions over FlexRay

2010-04-12
2010-01-0452
Future automobiles are required to support an increasing number of complex, distributed functions such as active safety and X-by-wire. Because of safety concerns and the need to deliver correct designs in a short time, system properties should be verified in advance on function models, by simulation or model checking. To ensure that the properties still hold for the final deployed system, the implementation of the models into tasks and communication messages should preserve properties of the model, or in general, its semantics. FlexRay offers the possibility of deterministic communication and can be used to define distributed implementations that are provably equivalent to synchronous reactive models like those created from Simulink. However, the low level communication layers and the FlexRay schedule must be carefully designed to ensure the preservation of communication flows and functional outputs.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

The Use of Numerical Simulations to Perform Engineering Calculations of Window Defogging

2005-05-10
2005-01-2054
Two simple models for the calculation of window defogging have been developed. One uses a lumped system analysis to compute the evaporation of the liquid layer, while the other uses a transient, one dimensional conduction analysis. Both use Sherwood numbers and Nusselt numbers at the liquid air interface that are calculated via a computer simulation using FLUENT. The FLUENT simulations show that steady state Sherwood and Nusselt numbers are just as valid as those calculated from a transient simulation. Results are presented in terms of evaporation rates and liquid layer decrease with time.
Technical Paper

The Relative Effect of Paint Film Thickness on Bimetallic and Crevice Corrosion

1986-02-01
860109
The proliferation of Unibody construction, for vehicle weight reduction, and the expanded use of precoated steel, for improvement in outer body rust-through protection, has significantly increased the number of bimetallic and crevice unions on U.S. manufactured vehicles. Cyclic corrosion and proving ground testing has shown that these unions are highly active electrochemically, resulting in extensive anodic corrosion and cathodic de-lamination of the paint film. This work examines the individual contribution of each layer of the applied protective coatings package, with respect to applied film thickness, to the reduction of permeation by water, oxygen, and NaCl and resultant corrosion.
Technical Paper

The Reinvention of the Wheel: Progress in Car Radios and Their Future

1990-02-01
900039
Advances in digital and analog electronics have drastically changed car radio circuitry. Improvements in miniaturization of electrical and mechanical components have radically altered their size and styling. Computer modeling of the vehicle's interior environment has optimized car radio acoustics. It seems that the list of modern break-throughs is never ending. It is the intent of this paper to show that many of the technical marvels of today's car radios were first applied years, even decades, ago. From those early concepts, and their current revivals, a projection into the future of automobile radios will be made. As previously mentioned [1]: “If history teaches anything, it teaches the potential for repetition.”
Technical Paper

The Impact of Globalization and New Materials on the Transition to a Fully Digital Tool and Die

2009-04-20
2009-01-0979
Until recently, tool & die making was a very traditional industry, relying on extensive know-how accumulated over decades of practice. Essentially, it remained a two stage-process: engineering/manufacture, followed by tryout/productionization. Improvements focused on engineering and production methods, but tryout remained the exclusive domain of the die maker. At last, advances in computer modeling methods and the adoption of aggressive lean management principles have brought transformational changes to the tryout phase. At the same time, new safety and weight imperatives have increased the penetration of advanced materials, whose formability characteristics are quite different from mild steels. This paper will explore how these advanced materials affect this transformation.
Journal Article

The GTU: A New Realistic Generic Pickup Truck and SUV Model

2020-04-14
2020-01-0664
Traditionally, ground vehicle aerodynamics has been researched with highly simplified models such as the Ahmed body and the SAE model. These models established and advanced the fundamental understanding of bluff body aerodynamics and have generated a large body of published data, however, their application to the development of passenger vehicles is limited by the highly idealized nature of their geometries. To date, limited data has been openly published on aerodynamic investigations of production vehicles, most likely due to the proprietary nature of production vehicle geometry. In 2012, Heft et al. introduced the realistic generic car model ‘DrivAer’ that better represents the flow physics associated with a typical production vehicle.
Journal Article

Technical Analysis of a Proposed Shock Absorber Design Standard

2016-04-05
2016-01-1543
One important part of the vehicle design process is suspension design and tuning. This is typically performed by design engineers, experienced expert evaluators, and assistance from vehicle dynamics engineers and their computer simulation tools. Automotive suspensions have two primary functions: passenger and cargo isolation and vehicle control. Suspension design, kinematics, compliance, and damping, play a key role in those primary functions and impact a vehicles ride, handling, steering, and braking dynamics. The development and tuning of a vehicle kinematics, compliance, and damping characteristic is done by expert evaluators who perform a variety of on road evaluations under different loading configurations and on a variety of road surfaces. This “tuning” is done with a focus on meeting certain target characteristics for ride, handling, and steering One part of this process is the development and tuning of the damping characteristics of the shock absorbers.
Technical Paper

Surface and Engine Oil Effects on Journal Bearing Lubrication

1998-05-04
981408
Lubrication conditions in journal bearings lubricated with low friction engine oils have been investigated using two complementary experimental techniques. Load supporting capacity under conditions ranging from fully flooded to mixed lubrication was measured for several candidate oils using a bench test that simulates the dynamic motion of a journal bearing at fixed, measurable eccentricities. The performance of these oils was also assessed using a bearing test rig in which journal friction is measured under typical engine conditions of speed, load and temperature. Significant mixed lubrication conditions were shown to exist at low speeds in heavily loaded journal bearings. Under such conditions, oil with friction reducing additives exhibit higher load supporting capacity, distinct separation of moving parts, and reduced friction relative to oils without such additives.
Technical Paper

Structural Optimization for Crash Pulse

2005-04-11
2005-01-0748
In vehicle safety engineering, it is important to determine the severity of occupant injury during a crash. Computer simulations are widely used to study how occupants move in a crash, what they collide during the crash and thus how they are injured. The vehicle motion is typically defined for the occupant simulation by specifying a crash pulse. Many computer models used to analyze occupant kinematics do not calculate both vehicle motion and occupant motion at the same time. This paper presents a framework of response surface methodology for the crash pulse prediction and vehicle structure design optimization. The process is composed of running simulation at DOE sampling data points, generating surrogate models (response surface models), performing sensitivity analysis and structure design optimization for time history data (e.g., crash pulse).
Technical Paper

Steering Wheel Leather Peeling Off Failure Investigation and Analysis

2017-03-28
2017-01-0320
Customer expectations for improved performance, comfort levels, and aesthetics have led automobile manufacturers to use leather for seats, steering wheels, instrument panels, door panels, and other components. To increase the drivers’ comfort level, there is always a soft pad layer applied under the leather in the steering wheel. This paper will describe a potential failure mode that occurs when materials migrate from one material to another material in multilayer material constructions. In this case dioctyl phthalate migrated from the soft pad layer into the leather surface, affecting the durability performance of the leather coating. This paper describes the failure and demonstrates an effective test methodology to test for this failure during the materials and components validation process.
Technical Paper

Steering Grunt Noise Robustness Improvement

2009-05-19
2009-01-2095
Grunt is a structure-born noise caused by resonance of the steering gear torsion bar (T-bar) in an HPAS (Hydraulic Power Assist Steering) system. The goal of this work was to develop techniques to quantify and predict grunt in a RV (rotary valve) steering gear system. First, vehicle testing was used to identify an objective metric for grunt: y = dynamic pressure in the return line. Then, a computer simulation was developed to predict y as a function of two known control factors. The simulation results were correlated to measurements on a test vehicle. Finally, the simulation was expanded to include two additional control factors, and grunt predictions were demonstrated on a different test vehicle.
Technical Paper

Squeak and Rattle Behavior of Elastomers and Plastics: Effect of Normal Load, Sliding Velocity, and Environment

2003-05-05
2003-01-1521
The use of plastics and elastomers, for interior and exterior automotive components, presents a risk of frictionally incompatible materials contacting each other, resulting in squeaks, ticks, chirps… Ford's NVH S&R Department, and MB Dynamics have developed a tester (Figures 1 and 2) that can measure friction, and sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors that allows us to provide up-stream engineering information to Forward Model Design Engineers. When material pairs undergo sliding contact, friction forces can cause elastic deformation adjacent to the contacting surfaces. The elastic deformation is a mechanism for storing energy and sound is produced when the energy is released. The sound that we hear may be a squeak or squeal (multiple stick-slip) or a tick (single stick-slip).
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Journal Article

Side Impact Pressure Sensor Predictions with Computational Gas and Fluid Dynamic Methods

2017-03-28
2017-01-0379
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
X