Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Effect on Three-Way Catalyst Deactivation and Improvement

1987-11-08
871192
Thermal effects on three-way catalysts and deterioration characteristics were studied. Aging atmosphere (oxidizing or reducing) and temperature contributed to catalyst performance deterioration. Catalysts sharply lost their activities under oxidizing conditions at an aging temperature of 900°C and above. Thermal degradation was found due mainly to the decrease in the surface area of alumina coated on the substrate and the increase in the size of cerium oxide (CeO2) crystal particle, an oxgen storage component (OSC). Also observed was a close correlation between the alumina surface area loss and the volume loss of micro pores with their radius less than 100 Å. Tests demonstrated that the catalyst thermal degradation can be reduced if the alumina micro pore volume loss and the CeO2 crystal particle size increase are restrained.
Technical Paper

The Effect of New Shape Support Material for the Lean Nox Trap Catalyst on its Catalytic Characteristics

2007-08-05
2007-01-3732
The new shape ceria-based support material for a lean NOx trap catalyst (LNT) was developed and its catalytic characteristics were investigated. It has a unique shape that each fine particle of raw material is formed into hollow sphere. Samples of platinum loaded powder catalysts were obtained with either the hollow sphere ceria-based material or two kinds of the conventional shape one, and their catalytic activities were evaluated with the synthetic gas. The aged powder catalyst using the hollow sphere ceria-based material had higher CO oxidation performance at low temperature as compared to the conventional shape one with the same composition. The characterization results indicated that the hollow sphere ceria-based material had high thermal stability.
Technical Paper

The Development and Implementation of an Engine Off Natural Vacuum Test for Diagnosing Small Leaks in Evaporative Emissions Systems

2003-03-03
2003-01-0719
This paper discusses an approach to detecting small leaks in an automobile's evaporative emissions systems that is a technique based upon ideal gas laws. It does this by monitoring pressure in the system while the vehicle's engine is off. This low cost solution can be easily implemented on General Motors vehicles using existing components. The topics covered in this paper include details on the background of the problem and the technique, the underlying thermodynamics of the technique, a description of the algorithm, testing and data collection considerations.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Impact of Ultra Thinwall Catalyst Substrates for TIER2 Emission Standards

2003-03-03
2003-01-0658
The impact of ultra thinwall catalysts on TIER2 emission performance, packaging and total system cost was evaluated. The primary focus was to compare ultra-thinwall and thinwall cell configurations (400/3, 400/4, 600/2, 600/3, 600/3 hex, 900/2, and 1200/2) with a baseline 600/4 at constant substrate volume, washcoat and PGM loading. Other areas investigated included the evaluation of decreasing catalyst volume while maintaining constant or increased mass transfer capabilities while holding washcoat and PGM loadings constant. The emissions impact of varying washcoat and PGM loading was measured on specific substrates, including a comparison of square to hex cell. Backpressure for each configuration was calculated with the Corning substrate pressure drop modeling tool. Converters were rapid aged on dynamometers reflecting approximately a 50,000 mile aged performance. Emission testing was completed using the FTP test cycle.
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

2002-10-21
2002-01-2884
The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Technical Paper

High Fuel Economy CIDI Engine for GM PNGV Program

2002-03-04
2002-01-1084
A compact, lightweight compression-ignition engine designed for high fuel economy and low emissions was developed by ISUZU for the GM PNGV vehicle. This engine was the key component in the selected parallel hybrid vehicle powertrain for the 80 mpg fuel economy target. The base hardware was derived from a 1.7 Liter, 4-cylinder engine, and a three-cylinder version was created for the PNGV application. To achieve the required high efficiency, the engine used lightweight components thus minimizing weight and friction. To reduce exhaust emissions, electromechanical actuators were used for EGR, intake throttle, and turbocharger. Through careful application of these devices and combustion development, stringent engine out exhaust emission targets were also met.
Technical Paper

Experimental and Modeling Evaluations of a Vacuum-Insulated Catalytic Converter

1999-10-25
1999-01-3678
Vehicle evaluations and model calculations were conducted on a vacuum-insulated catalytic converter (VICC). This converter uses vacuum and a eutectic PCM (phase-change material) to prolong the temperature cool-down time and hence, may keep the converter above catalyst light-off between starts. Tailpipe emissions from a 1992 Tier 0 5.2L van were evaluated after 3hr, 12hr, and 24hr soak periods. After a 12hr soak the HC emissions were reduced by about 55% over the baseline HC emissions; after a 24hr soak the device did not exhibit any benefit in light-off compared to a conventional converter. Cool-down characteristics of this VICC indicated that the catalyst mid-bed temperature was about 180°C after 24hrs. Model calculations of the temperature warm-up were conducted on a VICC converter. Different warm-up profiles within the converter were predicted depending on the initial temperature of the device.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Development of PGM Single Nano Catalyst Technology

2009-04-20
2009-01-1079
A newly developed three-way catalyst (TWC) has excellent thermal durability with an ultra low amount of platinum group metals (PGM). The performance of the new catalyst is similar to that of a conventional TWC but with only 1/10 of the typical PGM loading. In the conventional TWC, the PGM particles are simply deposited on the surface of the support material; the particles sinter during thermal aging, resulting in significant thermal deterioration. The new developed catalyst contains small nano-sized PGM particles with a unique microstructure and support materials. With this material, the PGM particles remain at the single nano size after high temperature aging.
Technical Paper

Development of Detailed Surface Reaction Mechanism of CO/ NO/ O2 System for Three Way Catalyst Based on Gaseous and Surface Species Analyses

2023-09-29
2023-32-0122
In this study, we determined the detailed reaction mechanism of CO/NO/O2 for automotive three way catalysts. The N2O formation process obtained from measurements of the reaction properties and the formation process of adsorbed NCO species obtained from surface analysis of platinum group metals were added to a previous detailed surface reaction mechanism. The computational accuracy of the developed reaction mechanism was verified by the one-dimensional simulation software BOOST, and it was found to be sufficient for any combination of platinum group metals and gas concentrations.
Technical Paper

Developing Efficient Motorcycle Oils

2018-10-30
2018-32-0021
Motorcycle OEMs faced with stringent global fuel economy and emission regulations are being forced to develop new hardware and emissions control technologies to remain compliant. Motorcycle oils have become an enabling technology for the development of smaller, more efficient engines operating at higher power density. Many OEMs have therefore become reliant on lubricants to not only provide enhanced durability under more extreme operating conditions, but to also provide fuel economy benefits through reduced energy losses. Unlike passenger car oils that only lubricate the engine, motorcycle oils must lubricate both the engine and the drive train. These additional requirements place different performance demands versus a crankcase lubricant. The drive train includes highly loaded gears that are exposed to high pressures, in turn requiring higher levels of oil film strength and antiwear system durability.
Technical Paper

Developed Technologies of the New Rotary Engine (RENESIS)

2004-03-08
2004-01-1790
The newly developed rotary engine has achieved major progress in high performance, improved fuel economy and clean exhaust gas by innovative action. The engine of the next generation is named RENESIS, which stands for “The RE (Rotary Engine)'s GENESIS” or the rotary engine for the new millennium. The peripheral exhaust port of the previous rotary engine is replaced by a side exhaust port system in the RENESIS. This allows for an increase in the intake port area, thus producing higher power. Exhaust opening timing is retarded to improve thermal efficiency. The side exhaust port also allows reducing the internal EGR, stabilizing the combustion at idling. The improved thermal efficiency and the stabilized idle combustion result in higher fuel economy. In addition, the side exhaust port allows a reduction of the HC mass, realizing reduced exhaust gas emission.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Counteracting detrimental EGR effects with diesel fuel additive

2003-05-19
2003-01-1915
A new generation of fluid technology using novel diesel fuel detergent/dispersant chemistry provides a multitude of beneficial effects to the diesel engine, especially the latest model designs. In addition to improved injector, valve and combustion chamber deposit removal, the additive restores power, fuel economy, performance and emission levels1. Positive observations have also been documented along with improved performance concerning crankcase lube viscosity, soot loading and TBN retention. An even greater added benefit is the inherent capability of the fuel additive to deal with several EGR issues now prominent with the introduction of new engines. Recent research, reported herein, has uncovered the extensive efficacy of this chemistry for piston durability and neutralization of ring corrosion phenomena. All of the beneficial additive attributes are further enhanced with increased oxidative and thermal fuel stability and no loss of filterability.
Technical Paper

Controlling the Corrosion of Copper Alloys in Engine Oil Formulations: Antiwear, Friction Modifier, Dispersant Synergy

2002-10-21
2002-01-2767
The next generation of engine oil under development has been formulated to maintain beneficial oil lubrication properties at increased engine operating temperatures, increased drain-oil intervals, and with the recirculation of exhaust gas back through the engine (EGR). These conditions result in the formation of degradation products from decomposed fuel, additives, and base oil. Decomposition products containing reactive sulfur can result in the corrosion of copper alloys. Sulfur-containing compounds currently used in these formulations can include zinc dithiophosphates (ZDP), molydithiophosphates, molydithiocarbamates, and molybdic acid/amine complexes, along with sulfur containing detergents and antioxidants. Interactions among these components and others in the formulation often determine the propensity of these formulations for corrosion. This paper will discuss the results of corrosion bench tests used to screen oil formulations for copper corrosion.
X