Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Weathering of Black Plastics for Automotive Exteriors

2003-03-03
2003-01-1191
Ten mold-in-color black polymers were evaluated for exterior weathering in an attempt to improve the specifications for exterior mold-in-color plastics to meet five year durability for a 95th percentile sunbelt customer. Four different weathering methods were utilized including Arizona exposure, Florida exposure, and Xenon arc exposures per the GMNA and the GM Europe methods. Colorfastness, gloss retention and other material property changes due to weathering were measured and analyzed against two GM durability standards. For the appearance attributes, correlations between actual exposure and accelerated exposure were attempted. Test results before and after polishing were also analyzed. Finally, in addition to comparing the performance of the ten polymers, the four weathering methods are compared and discussed with recommendations for the preferred testing regimen.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

2017-03-28
2017-01-0066
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
Technical Paper

Virtual FMEA : Simulation-Based ECU Electrical Failure Mode and Effects Analysis

2014-04-01
2014-01-0205
“Virtual Failure Mode and Effects Analysis” (vFMEA), a novel safety-verification method of control software for automotive electronic systems, was proposed to save prototyping cost at verification stage. The proposed vFMEA is system-level FMEA method, which uses virtualized electronic control units (ECUs) consisting of microcontroller models on a microcontroller simulator and a transistor-level circuit models on a circuit simulator. By using the structure, the control software in binary code formats can be verified when a circuit-level fault occurs in the ECU hardware. As an illustrative example, vFMEA was applied to an engine ECU. As a result of short-circuit fault into a driver IC, engine revolution and engine speed decreased. However, the engine continued to operate normally when an open-circuit fault occurred in a capacitor connected in parallel. Effects of the hardware faults in ECU on a vehicle are demonstrated; thereby software verification can be performed using vFMEA system.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Using OCTO SOI nMOSFET to Handle High Current for Automotive Modules

2012-10-02
2012-36-0211
This paper presents an experimental comparative study between the OCTOGONAL-Gate Silicon-on-Insulator (SOI) nMOSFET (OSM) and the conventional SOI nMOSFET (CSM) considering the same bias conditions and the same gate area (AG), in order to verify the influence of this new MOSFET layout style to handle high current for automotive modules. Analog integrated circuits (ICs) design tends to be considered an art due to a large number of variables and objectives to achieve the product specifications. The designer has to find the right tradeoffs to achieve the desired automotive specification such as low power, low voltage, high speed and high current driver. SOI MOSFET's technology is required to provide the growth of embedded electronics. This growth is driving demand for power-handling devices that are smaller yet still provide high current driver capabilities.
Technical Paper

User Friendly Trucks

1997-02-24
970275
Today trucks account for close to half of the US passenger vehicle market. And customers expect more and more from their trucks in terms of comfort and convenience features. The key to developing Best-in-Class comfort and convenience attributes lies in applying Ergonomic principles to the vehicle interior design. Lear Corporation has recently studied 4 truck interiors in the Sport Utility Market Segment focusing on Ergonomic design issues. This paper will review the Sport Utility study results and make interior design recommendations. In this market, functionality is of primary importance to customers. Using random samples of truck owners, we have examined the functionality of door panels, consoles, controls, cupholders, cargo covers and the rear cargo area. Several factors ranging from reach criteria, tactile feel and usability through operating efforts and the motion required to operate the various features were examined.
Technical Paper

Use of Layered Media for Noise Abatement in Automotive Interiors: A Balanced Approach

2001-04-30
2001-01-1456
Concepts for dual density materials for usage as absorbers and decouplers are based on well-established layered media principles and have been applied for many years in non-automotive applications. Balancing the mass, air flow resistance, and thickness allows for improved noise attenuation in the low to mid frequency range which is of particular interest for automotive NVH management. Using these principles, products were tuned via mass and airflow resistance to reduce noise levels while also significantly reducing mass. Validation in various vehicles confirmed that up to a 55% reduction of a sound package's mass is possible. The considerable weight reductions of dash insulators and carpet systems are possible at the same times as the sound level in the vehicle interior is at least maintained and frequently improved.
Technical Paper

Unifying Value Methodology and Robust Design to Achieve Design for Six Sigma

2006-04-03
2006-01-0998
The concept of product or system function is considered as described in the Taguchi System of Quality Engineering. The importance of transfer functions is also discussed and a review of conventional value analysis techniques is given. This paper proposes a combination of the principles of robust design and value methodology to enable on-target functionality and direct cost allocation early in the product development process. The discussion on integration of value analysis principles in robust design methodology is provided considering the six sigma environment.
Technical Paper

Transient Vibration Simulation of Motor Gearbox Assembly Driven by a PWM Inverter

2017-06-05
2017-01-1892
Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
Technical Paper

Time Determinism and Semantics Preservation in the Implementation of Distributed Functions over FlexRay

2010-04-12
2010-01-0452
Future automobiles are required to support an increasing number of complex, distributed functions such as active safety and X-by-wire. Because of safety concerns and the need to deliver correct designs in a short time, system properties should be verified in advance on function models, by simulation or model checking. To ensure that the properties still hold for the final deployed system, the implementation of the models into tasks and communication messages should preserve properties of the model, or in general, its semantics. FlexRay offers the possibility of deterministic communication and can be used to define distributed implementations that are provably equivalent to synchronous reactive models like those created from Simulink. However, the low level communication layers and the FlexRay schedule must be carefully designed to ensure the preservation of communication flows and functional outputs.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

The Use of Subjective Jury Evaluations for Interior Acoustic Packaging

2003-05-05
2003-01-1506
Unweighted dB, dB(A), and Articulation Index do not always accurately identify the sound quality of vehicle interior noise. This paper attempts to determine the relevance of sound quality in interior automotive acoustics. Traditionally, overall dB(A) levels have been the driving factor, along with cost, in selecting an interior automotive acoustic package. In this paper, we make use of subjective jury evaluations to compare perceptions of various interior acoustic packages and compare these results to objective values. These values include, but are not restricted to, dB, dB(A), and Articulation Index. Considerations are made as to whether differences between packages can be perceived by customers. This paper also attempts to show that subjective evaluations can differ with the standard metrics used to select acoustic packages and describe why such evaluations might be important in acoustic package selection.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Development of a Sound Quality-Based End-of-Line Inspection System for Powered Seat Adjusters

2001-03-05
2001-01-0040
In recent years, the perceived quality of powered seat adjusters based on their sound during operation has become a primary concern for vehicle and seat manufacturers. Historical noise targets based on overall dB(A) at the occupant's ear have consistently proved inadequate as a measure of the sound quality of a seat adjuster. Significant effort has been devoted to develop alternative sound quality metrics that can truly discriminate between “good” and “bad” seat adjusters. These new metrics have been successfully applied for some years by product development engineers in test labs. However, in the assembly plant the sound quality of the seat adjuster is still assessed subjectively by an operator at the end of the assembly line. The main problem with this approach is not only the lack of consistency and repeatability across large samples of seat tracks, but also the fact that the only feedback provided from the end-of-line to the product development team is of subjective nature.
Journal Article

Tensile Deformation and Fracture of TRIP590 Steel from Digital Image Correlation

2010-04-12
2010-01-0444
Quasi-static tensile properties of TRIP590 steels from three different manufacturers were investigated using digital image correlation (DIC). The focus was on the post-uniform elongation behavior which can be very different for steels of the same grade owing to different manufacturing processes. Miniature tensile specimens, cut at 0°, 45°, and 90° relative to the rolling direction, were strained to failure in an instrumented tensile stage. True stress-true strain curves were computed from digital strain gages superimposed on digital images captured from one gage section surface during tensile deformation. Microstructural phases in undeformed and fracture specimens were identified with optical microscopy using the color tint etching process. Fracture surface analyses conducted with scanning electron microscopy and energy dispersive spectroscopy were used to investigate microvoids and inclusions in all materials.
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
X