Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Mid-Frequency Response Using the Superelement Component Dynamic Synthesis Technique

2015-04-14
2015-01-1320
This paper presents the Component Dynamic Synthesis (CDS) superelement creation, which contains the loading frequency information and is much faster than the Component Mode Synthesis (CMS) method in the residual run. The Frequency Response Functions (FRFs) are computed using the direct frequency response method and the inversion of dynamic stiffness matrix is done using the singular value decomposition (SVD) method for every discrete frequency in the frequency range of interest. The CDS will be very efficient and economical for design of experiments and robust optimization, where hundreds of runs are required. The CDS super element can be used when there is a large number of residual runs on a very large vehicle model at higher end of the frequency range of study. For the residual analysis to run as fast as possible, all components, except very small ones, need to be converted into CDS superelements.
Journal Article

Transmission Dynamic Modeling and Parametric NVH Analysis

2015-04-14
2015-01-1147
A new approach for modeling and analysis of a transmission and driveline system is proposed. By considering the stiffness, damping and inertias, model equations based on lumped parameters can be created through standard Lagrangian Mechanics techniques. A sensitivity analysis method has then been proposed on the eigenspace of the system characteristic equation to reveal the dynamic nature of a transmission and driveline system. The relative sensitivity calculated can clearly show the vibration modes of the system and the key contributing components. The usefulness of the method is demonstrated through the GM 6-speed RWD transmission by analyzing the dynamic nature of the driveline system. The results can provide a fundamental explanation of the vibration issue experienced and the solution adopted for the transmission.
Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

2016-04-05
2016-01-1159
This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Technical Paper

Technological Comparison for Dual Phase and Advanced High Strength Low Alloy Steels Regarding Weldability and Mechanical Properties

2014-04-01
2014-01-0988
This paper presents a technological comparison of weldability and mechanical properties between a dual phase steel (DP) and an advanced high strength low alloy steel (AHSLA) used for automotive structural parts in order to demonstrate some unclear characteristics of each. Samples were spot welded and had their hardness and microstructure analyzed, also a shear test was applied on the weld button area. The edge stretchability was analyzed using hole expansion tests and tensile tests to determine the tensile and yield strength, anisotropic coefficients and total elongation. Data were used to estimate crash energy absorption. The results showed an AHSLA steel with higher than typical ductility. Finally, while DP showed improved stretchability, it was also concluded that such AHSLA could perform better bendability, drawability, flangeability and weldability.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

Strain Field Measurement in the Vicinity of Ductile Rupture from Digital Image Correlation

2008-04-14
2008-01-0856
A methodology that enables two-dimensional strain field measurement in the vicinity of ductile rupture is described. Fully martensitic steel coupons were strained to fracture using a miniature tensile stage with custom data and image acquisition systems. Rupture initiated near the center of each coupon and progressed slowly toward the gage section edges. A state-of-the-art digital image correlation technique was used to compute the true strain field before rupture initiation and ahead of the resulting propagating macroscopic crack before final fracture occurred. True strains of the order of 95% were measured ahead of the crack at later stages of deformation.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

2014-04-01
2014-01-1988
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.
Technical Paper

Safety Belt Testing Apparatus

2015-04-14
2015-01-1485
A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
Technical Paper

Review of 2013 U.S. Retail Biodiesel Blends Quality Survey

2014-04-01
2014-01-1379
Biodiesel is a domestic, renewable fuel for diesel engines and is made from agricultural co-products such as soybean oil, rapeseed oil, palm oil and other natural oils. Biodiesel is a cleaner burning fuel that is biodegradable and non-toxic compared to petroleum diesel. Biodiesel has become a major alternative fuel for automotive applications and is critical for lowering US dependence on foreign oil and attain energy security. Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467 specifications. Field warranty and validation tests have shown significant concerns with use of poor quality biodiesel fuels including fuel system deposits, engine oil deterioration, and efficiency loss of the after treatment system. Maintaining good quality of biodiesel is critical for success as a commercial fuel.
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
Technical Paper

Real-Time Estimation of Wheel Imbalances for Chassis Prognosis

2010-04-12
2010-01-0245
“Wheel balancing” is one of the common automotive repairs that the owners of an automobile usually experience. An unbalanced set of a tire and a rim or wheel on which the tire is mounted could cause vibration while driving. Such vibrations may be sensed by the driver at the steering wheel (known as smooth road shake). If left untreated for a long period of time, the vibration, induced by the imbalance, may propagate to chassis components such as bearing and bushing. This in turn causes excessive wear that eventually leads to a premature failure. Therefore, an early detection of wheel imbalances can not only significantly reduce the cost and time for diagnosis and repair of the wheel, but also prevent further damage to chassis components. This paper studies the feasibility of real-time detection of wheel imbalances in real world driving conditions, using recursive least square estimation method. The simulation study shows promising results for implementation in a real vehicle.
Technical Paper

Performance Equivalent Thickness of a Sound Insulation System

2013-05-13
2013-01-1981
Vehicle sound insulation systems, such as front of dash mats or carpet assemblies, etc. play a key role in controlling vehicle interior noise. However, dash and carpet insulators are often designed to have varied thickness in compliance with packaging constraints or to fulfill manufacturing clearance requirements. While it is obvious to NVH engineers that thinned-down areas would significantly affect the insulation performance, design engineers would benefit from a quick tool to flag any design details that may negatively impact the performance. This paper therefore proposes a concept called the performance equivalent thickness for the sound insulation system. The aim is to link acoustic performance of an insulator layer to a geometric measure so that the component performance can be easily monitored and preserved at the design stage.
Journal Article

Performance Characterization of Automatic Transmission Upshifts with Reduced Shift Times

2015-04-14
2015-01-1086
As the number of fixed gear ratios in automatic transmissions continues to increase in the pursuit of powertrain system efficiency, particular consideration must continue to be focused on optimizing the design for shifting performance. This investigation focuses on the effect of shift time on the performance attributes of shift quality, durability, on schedule fuel consumption and enablers to further reduce shift time. A review of fundamental design features that enable reduced shift times in both planetary and dual clutch transmissions is presented along with key operating features of both the transmission and engine/prime mover. A lumped parameter metric is proposed to assess and compare the upshift controllability of new transmission architectures and powerflows using simple analysis. The durability of fast shift times during performance maneuvers are quantified through calculation of shifting clutch energy and power from analysis and form measurements on a powertrain dynamometer.
Technical Paper

Optimal Production Trimming Process for AHSS Sheared Edge Stretchability Improvement

2014-04-01
2014-01-0994
Edge fracture is one of the major issues for stamping Advanced High Strength Steel (AHSS). Recent studies have showed this type of fracture is greatly affected by an improper trimming process. The current production trimming process used for the conventional mild steels has not been modified for AHSS trimming. In addition to the high-energy requirement, the current mechanical trimming process would generate a rough edge (burr) with microcracks in trimmed edges for AHSS trimming, which could serve as the crack initiation during forming. The purpose of this study is to develop a proper production trimming process for AHSS and elucidate the effect of the trimmed edge conditions on edge fracture. A straight edge shearing device with the capability of adjusting the shearing variables is used in this study.
Technical Paper

Normally-Engaged Dual-Piston Clutch for Engine Stop-Start Application

2015-04-14
2015-01-1141
For the conventional 6 speed automatic transmission with engine stop-start powertrain, an electrically-driven auxiliary pump is implemented to maintain the transmission line pressure as required to lock-up the CB1234 clutch during engine auto-stop conditions. Upon releasing the brake pedal, the transmission engages into first gear with the objective to accelerate the vehicle in a responsive manner. In this study, a novel normally-engaged dual-piston clutch concept is designed to keep the CB1234 clutch locked-up during engine auto-stop conditions with the intention to eliminate the auxiliary pump without compromising vehicle performance. This dual piston clutch concept requires a relatively low line pressure to release the normally-engaged clutch when needed, thus, minimizing the hydraulic pumping work. To explore the functionality of this concept under a wide-open-throttle (WOT) auto-start transition, modeling and simulation of the normally-engaged dual-piston clutch is completed.
Technical Paper

Needle Roller Bearing Lubricant Flow CFD Simulations

2013-01-09
2013-26-0041
This work analyzes the lubricant supply to critical regions of needle roller bearing of an automatic transmission. The needle roller bearing is a critical component of an automatic transmission and it has several rotating cylindrical needle rollers that are having relative motion with inner surface of the pinion. Supply of lubricant to the needle roller bearings is very essential to prevent failure of the bearings due to frictional contact between rollers and inner surface of pinion. The supply of lubricant to the needle roller bearings depends on the location of oil supply hole. Lubricant supply to the needle roller bearings of an automatic transmission is studied using commercial 3D Computational Fluid Dynamics (CFD) software for different oil supply positions. CFD simulation is performed for the region between the pinion supply hole and end of the needle bearings including all needles. Lubricant is supplied to the needle bearing from the pinion pin oil supply hole.
Technical Paper

Model-Based Exhaust Pressure Control with Dynamic Feedforward for Engine Protection

2014-04-01
2014-01-1163
The need to reduce fuel consumption and harmful pollutants from engines is an important task for automotive industry. It has led to technological advances in new engine design, such as engine downsizing. Due to the reduction of displacement, engine power output is reduced and thus its overall performance is limited. In order to increase torque and power, engines are typically boosted by turbochargers or superchargers. Meanwhile, the improvement on turbo design makes it possible to operate VGT (variable geometry turbocharger) at harsher exhaust environment for gasoline engines as well (e.g., with much higher exhaust temperature than that of diesel engines). This makes VGT related control problems more challenging and requires attention to protecting corresponding engine hardware during an entire engine life.
Journal Article

Mapping of Global Road Systems Based on Statistical Discriminant Analysis

2010-04-12
2010-01-0924
Automotive manufacturers are facing continuously changing Global environment. Traditionally, these manufacturers relied on structural and general durability tests to validate vehicles. For these tests to remain representative of customer usage in a Global environment, the overall surface conditions of the Global road systems must be studied. Understanding and classifying these road systems conditions is an important step in dealing with vehicle durability in the Global environment. In this paper, an approach to mapping the world road systems into Established Roads (ER) and Developing Roads (DR), utilizing Statistical Discriminant Analysis (SDA), is presented. The classification of Global regions as DR and ER road systems can be effectively used to recommend appropriate development and validation tests for each road system. A few examples are presented to demonstrate how the ER vs.
Journal Article

Lightweight Acoustic System Performance Target Setting Process

2013-05-13
2013-01-1982
In the vehicle development process, one important step is to set a component performance target from the vehicle level performance. Conventional barrier-decoupler dash mats and floor trim underlayment systems typically provide sound transmission loss (STL) with minimal absorption. Thus the performance of such components can be relatively easily specified as either STL or Insertion Loss. Lightweight dissipative or multi-layered acoustic materials provide both STL and significant absorption. The net performance is a combination of two parameters instead of one. The target for such components needs to account for this combined effect, however different suppliers use unique formulations and manufacturing methods, so it is difficult and time consuming to judge one formulation against another. In this paper, a unique process is presented to set a component target as a combined effect of STL and absorption.
Journal Article

Lab Evaluation and Comparison of Corrosion Performance of Mg Alloys

2010-04-12
2010-01-0728
More Mg alloys are being considered for uses in the automotive industry. Since the corrosion performance of Mg alloy components in practical service environments is unknown, long term corrosion testing at automotive proving grounds will be an essential step before Mg alloy components can be implemented in vehicles. However, testing so many Mg alloy candidates for various parts is labor intensive for the corrosion engineers at the proving grounds. This report presents preliminary results in evaluating corrosion performance of Mg alloys based on rapid corrosion and electrochemical tests in the lab. In this study, four Mg alloy candidates for transmission cases and oil pans: AE44, AXJ530, MRI153M and MRI230D were tested in the lab and at General Motors Corporation Milford Proving Ground and their corrosion results were compared.
X