Refine Your Search

Topic

Author

Search Results

Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Technical Paper

Virtual Road Load Data Acquisition for Twist Axle Rear Suspension

2011-04-12
2011-01-0026
The twist axle has highly complicated load paths because of its multiple functions of suspension components. This nature of the twist axle suspension makes the fixed reacted multi-axial suspension test more sophisticated than for other independent suspensions. GM has used Virtual Road Load Data Acquisition (vRLDA) for laboratory tests in the past, but this is the first application of vRLDA for a twist axle multi-axial suspension durability test. In order to utilize vRLDA data for the test input, a new approach to 8 channel multi-axial suspension durability test development was proposed for a twist axle rear suspension. vRLDA for a GM vehicle with twist axle rear suspension was performed and briefly discussed. Instead of using strain data from the twist axle for correlation channels, inboard channels such as shock tower vertical and trailing arm forces were used in the test development.
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Technical Paper

Use of DFSS Principles to Develop an Objective Method to Assess Transient Vehicle Dynamics

2013-04-08
2013-01-0708
This paper presents subjective and objective methods for evaluating transient vehicle dynamics characteristics in four sections: (1) Definition of transient behavior in terms of four traits-agility, stability, precision, and roll support; (2) Description of subjective evaluation methods; (3) Implementation of Design for Six Sigma principles to the development of a steering robot controlled objective test for transient performance; (4) The final section of this paper uses data from simulation and road tests to demonstrate how chassis design parameters can affect transient handling performance.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Technical Paper

Small Amplitude Torsional Steering Column Dynamics on Smooth Roads: In-Vehicle Effects and Internal Sources

2011-04-12
2011-01-0560
Internally excited torsional steering wheel vibrations at frequencies near 8-22 Hz on smooth roads can produce driver disturbances, commonly described as “SHAKE”. These vibrations are primarily excited by the rotating front suspension corners and are periodic in the rotational frequencies of the tire-wheel assemblies. The combination of vehicular dynamic amplification originating in dominant suspension and steering system vibratory modes, and a sufficiently large 1st harmonic non-uniformity excitation of the rotating corner components, can result in periodic vibrations exceeding thresholds of disturbance. Controlling the periodic non-uniformity excitation through individual component requirements (e.g., wheel imbalance, tire force variation, wheel runout, concentric piloting of wheel on hub) is difficult since the desired upper limits of individual component requirements for vibration-free performance are typically beyond industry capability.
Technical Paper

Seal Testing in Aerated Lubricants

2011-04-12
2011-01-1209
Typical seal immersion testing in lubricants does not aerate the lubricant as typically seen during normal operation of a transmission or axle. This paper will discuss a new test apparatus that introduces air into transmission fluids and gear oils during seal immersion testing. The seal materials selected for the testing are from current vehicle applications from several different material families. The test results compare the standard properties: change in tensile strength, elongation, hardness, and volume swell. Several tests were completed to investigate and refine the new testing method for seal compatibility testing with transmission fluids and gear oils. Initial results from the first data sets indicate that lubricant aeration helps improve test repeatability. In addition to aeration, the test results explore appropriate fluid immersion temperature for repeatability and appropriate test duration.
Technical Paper

Relative Torque Estimation on Transmission Output Shaft with Speed Sensors

2011-04-12
2011-01-0392
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by transmission output shaft, so that torque regulation is critical in transmission shift control and etc. However, since a physical torque sensor is expensive, current shift control in AT is usually achieved by tracking a turbine speed profile due to the lack of the transmission output torque information. A direct torque feedback has long been desired for transmission shift control enhancement. This paper addresses a “virtual” torque sensor (VTS) algorithm that can provide an accurate estimate on the torque variation in the vehicle transmission output shaft using (existing) speed sensors. We have developed the algorithm using both the transmission output speed sensor and anti-lock braking system speed sensors. Practical solutions are provided to enhance the accuracy of the algorithm. The algorithm has been successfully implemented on both FWD and RWD vehicles.
Technical Paper

Reducing Disturbances Caused by Reductions in Regenerative Brake Torque

2011-04-12
2011-01-0972
This paper presents a method to reduce the number of occurrences of vehicle deceleration disturbances due to the reduction of regenerative braking in the presence of wheel slip. Usually, regenerative braking is disabled when wheel slip is detected in order to allow the ABS system to efficiently cycle brake pressure. When this happens, the vehicle will momentarily lose deceleration due to the reduction in both regenerative brake torque and friction brake pressure, until friction brake pressure is reapplied. Some ABS activations can be defined as nuisance events, in which full ABS control is not necessary and is exited rapidly; for example, a vehicle driving through a pothole. In these cases it is desirable to continue regenerative braking in order to keep vehicle deceleration as smooth as possible.
Technical Paper

Process Automation Wizard for Vehicle Dynamics Applications

2011-04-12
2011-01-0740
The imperative to get to the market faster with new and better products, has determined all automotive OEM to rethink their product development cycle, and, as a result, many hardware based processes were replaced and/or augmented with virtual, software based ones. However, the virtualization itself does not guaranties better and faster products. In the area of vehicle dynamics, we concentrate on improving the multi-body model development process, facilitating comprehensive virtual testing, and verifying the robustness of the design. The authors present a highly flexible and efficient environment that encourages, enforces, and facilitates model sharing, reusing of components, and parallelization of vehicle dynamics simulations, developed on top of an existing commercial off-the-shelf engineering software application.
Technical Paper

Power Modules and Inverter Evaluation for GM Electrification Architectures

2012-04-16
2012-01-0340
GM has recently developed two kinds of vehicle electrification architectures. First is VOLTec, a heavy electrification architecture, and second is eAssist, a light electrification architecture. An overview, of IGBT power modules & inverters used in VOLTec and eAssist, is presented. Alternative power modules from few cooperative suppliers are also described in a benchmarking study using key metrics. Inverter test set up, procedure and instrumentation used in GM Power Electronics Development Lab, Milford are described. GM electrification journey depends on Power Electronics lab' passive test benches; double pulse tester, inductive resistive load bench and active emulator test cell without electric machines. Such test benches are preferred before dyne test cells are used for inverter software/hardware integration and motor durability tests cycles. Specific test results are presented.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Technical Paper

Multi-Disciplinary Analyses for Brake Fluid Temperature Evaluation

2013-04-08
2013-01-0635
During braking events, a brake corner sustains high brake torque, generating a large amount of heat in the process. This is most significant during mountain descent events and vehicle race track events. The brake thermal events not only reduce brake friction coefficient and lining life, but also produce elevated brake fluid temperature. Traditionally, brake hardware testing is warranted to evaluate brake fluid temperature for high speed flat track and mountain descent. These tests are costly and time-consuming. A CAE process to predict brake fluid temperature early in the vehicle development process before hardware exists, and to reduce and to replace testing will greatly benefit the vehicle development process. To this end, multiple analyses can be run. The heat transfer coefficients and cooling coefficients were evaluated from relevant CFD analyses.
Technical Paper

Modeling Dynamic Stiffness of Rubber Isolators

2011-04-12
2011-01-0492
Rubber isolators and bushings are very important components for vehicle performance. However, one often finds it is difficult to get the dynamic properties to be readily used in CAE analysis, either from suppliers or from OEM's own test labs. In this paper, the author provides an analytical method to obtain the dynamic stiffness of an exhaust isolator, using ABAQUS and iSight, with tested or targeted isolator static stiffness information. The analysis contains two steps. The first step is to select the (rubber/EPDM) material properties for the FE isolator model by matching the static stiffness with either the targeted spring rate (linear or nonlinear) or the (tested) load / deflection curve. The second step is to perform dynamic analysis on the statically “validated” FE isolator model to obtain its dynamic properties.
Technical Paper

Model Based Torque Converter Clutch Slip Control

2011-04-12
2011-01-0396
To realize better fuel economy benefits from transmissions, car makers have started the application of torque converter clutch control in second gear and beyond, resulting in greater demand on the torque converter clutch (TCC) and its control system. This paper focuses on one aspect of the control of the torque converter clutch to improve fuel economy and faster response of the transmission. A TCC is implemented to control the slip between the pump and turbine of the torque converter, thereby increasing its energy transfer efficiency and increasing vehicle fuel economy. However, due to the non-linear nature of the torque converter fluid coupling, the slip feedback control has to be very active to handle different driver inputs and road-load conditions, such as different desired slip levels, changes in engine input torques, etc. This non-linearity requires intense calibration efforts to precisely control the clutch slip in all the scenarios.
Technical Paper

Metrics for Quantifying and Evaluating Ability of Electronic Control System Architectures to Accommodate Changes

2011-04-12
2011-01-0447
Recent trends in the automotive industry show growing demands for the introduction of new in-vehicle features (e.g., smart-phone integration, adaptive cruise control, etc.) at increasing rates and with reduced time-to-market. New technological developments (e.g., in-vehicle Ethernet, multi-core technologies, AUTOSAR standardized software architectures, smart video and radar sensors, etc.) provide opportunities as well as challenges to automotive designers for introducing and implementing new features at lower costs, and with increased safety and security. As a result, the design of Electrical/Electronic (E/E) architectures is becoming increasingly challenging as several hardware resources are needed. In our earlier work, we have provided top-level definitions for three relevant metrics that can be used to evaluate E/E architecture alternatives in the early stages of the design process: flexibility, scalability and expandability.
Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
X