Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

“Verify-on-Demand” - A Practical and Scalable Approach for Broadcast Authentication in Vehicle-to-Vehicle Communication

2011-04-12
2011-01-0584
In general for Vehicle-to-Vehicle (V2V) communication, message authentication is performed on every received wireless message by conducting verification for a valid signature, and only messages that have been successfully verified are processed further. In V2V safety communication, there are a large number of vehicles and each vehicle transmits safety messages frequently; therefore the number of received messages per second would be large. Thus authentication of each and every received message, for example based on the IEEE 1609.2 standard, is computationally very expensive and can only be carried out with expensive dedicated cryptographic hardware. An interesting observation is that most of these routine safety messages do not result in driver warnings or control actions since we expect that the safety system would be designed to provide warnings or control actions only when the threat of collision is high.
Technical Paper

Visualization and Analysis of Condensation in Exhaust Gas Recirculation Coolers

2013-04-08
2013-01-0540
Cooled exhaust gas recirculation (EGR) is widely used in diesel engines to control engine-out NOx (oxides of nitrogen) emissions. A portion of the exhaust gases is re-circulated into the intake manifold of the engine after cooling it through a heat exchanger. EGR cooler heat exchangers, however, tend to lose efficiency and have increased pressure drop as deposit forms on the heat exchanger surface due to transport of soot particles and condensing species to the cooler walls. In this study, condensation of water vapor and hydrocarbons at the exit of the EGR cooler was visualized using a fiberscope coupled to a camera equipped with a complementary metal oxide semiconductor (CMOS) color sensor. A multi-cylinder diesel engine was used to produce a range of engine-out hydrocarbon concentrations. Both surface and bulk gas condensation were observed with the visualization setup over a range of EGR cooler coolant temperatures.
Technical Paper

Virtual Road Load Data Acquisition in Practice at General Motors

2011-04-12
2011-01-0025
Measured vehicle loads have traditionally been used as the basis for development of component, subsystem and vehicle level durability tests. The use of measured loads posed challenges due to the availability of representative hardware, scheduling, and other factors. In addition, stress was placed on existing procedures and methods by aggressive product development timing, variety in tuning and equipment packages, and higher levels of design optimization. To meet these challenges, General Motors developed new processes and technical competencies which enabled the direct substitution of analytically synthesized loads for measured data. This process of Virtual Road Load Data Acquisition (vRLDA) enabled (a) conformance to shortened product development cycles, (b) greater consistency between design targets and validation requirements, and (c) more comprehensive data.
Technical Paper

Virtual Road Load Data Acquisition for Twist Axle Rear Suspension

2011-04-12
2011-01-0026
The twist axle has highly complicated load paths because of its multiple functions of suspension components. This nature of the twist axle suspension makes the fixed reacted multi-axial suspension test more sophisticated than for other independent suspensions. GM has used Virtual Road Load Data Acquisition (vRLDA) for laboratory tests in the past, but this is the first application of vRLDA for a twist axle multi-axial suspension durability test. In order to utilize vRLDA data for the test input, a new approach to 8 channel multi-axial suspension durability test development was proposed for a twist axle rear suspension. vRLDA for a GM vehicle with twist axle rear suspension was performed and briefly discussed. Instead of using strain data from the twist axle for correlation channels, inboard channels such as shock tower vertical and trailing arm forces were used in the test development.
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Technical Paper

Vehicle Acoustic Sensitivity Performance Using Virtual Engineering

2011-04-12
2011-01-1072
In order to assess the possible ways of energy transfer from the various sources of excitation in a vehicle assembly to a given target location, frequency based substructuring technique and transfer path analysis are used. These methods help to locate the most important energy transfer paths for a specific problem, and to evaluate their individual effects on the target, thus providing valuable insight into the mechanisms responsible for the problem. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc. This paper is devoted to identify the noise transfer paths and the force transmissibility among the interfaces of different components in the vehicle for the low to mid frequency range.
Journal Article

Variable and Fixed Airflow for Vehicle Cooling

2011-04-12
2011-01-1340
This paper describes rationale for determining the apportionment of variable or ‘shuttered’ airflow and non-variable or static airflow through openings in the front of a vehicle as needed for vehicle cooling. Variable airflow can be achieved by means of a shutter system, which throttles airflow through the front end and into the Condenser, Radiator, and Fan Module, (CRFM). Shutters originated early in the history of the auto industry and acted as a thermostat [1]. They controlled airflow as opposed to coolant flow through the radiator. Two benefits that are realized today are aerodynamic and thermal gains, achieved by restricting unneeded cooling airflow. Other benefits exist and justify the use of shutters; however, there are also difficulties in both execution and practical use. This paper will focus on optimizing system performance and execution in terms of the two benefits of reduced aerodynamic drag and reduced mechanical drag through thermal control.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Transmission Virtual Torque Sensor - Absolute Torque Estimation

2012-04-16
2012-01-0111
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by the transmission. Clearly, torque regulation is important for transmission control. Unfortunately, a physical torque sensor has been too costly for production applications. With no torque measurement for feedback, controls in AT is mainly implemented in an open-loop fashion. Therefore, complicated adaptation algorithms are necessary while undesired shifts may still occur. To further simplify the controls and enhance its consistency and robustness, a direct torque feedback has long been desired in transmission control synthesis and development. A “virtual” torque sensor (VTS) algorithm has recently been developed to show a good potential in estimating relative torque along transmission output shaft using transmission output speed sensor and wheel speed sensors.
Technical Paper

Transmission Algorithm Development using System Simulation (Virtual Vehicle)

2011-04-12
2011-01-1233
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have had to cope with increasing levels of system complexity while at the same time being forced by the marketplace to improve system quality, reduce development costs, and improve time to market. General Motors Powertrain (GMPT) chose to meet these challenges through General Motors Company's Road-to-Lab-to-Math (RLM) strategy, particularly the Math-based method of a virtual vehicle simulation environment called System Simulation. The use of System Simulation to develop transmission control algorithms has enabled GMPT to improve product quality and reduce development times and costs associated with the dependence on physical prototypes. Additionally, System Simulation has facilitated the reuse of GMPT controls development assets, improving overall controls development efficiency.
Journal Article

Torque Converter Clutch Optimization: Improving Fuel Economy and Reducing Noise and Vibration

2011-04-12
2011-01-0146
The torque converter and torque converter clutch are critical devices governing overall power transfer efficiency in automatic transmission powertrains. With calibrations becoming more aggressive to meet increasing fuel economy standards, the torque converter clutch is being applied over a wider range of driving conditions. At low engine speed and high engine torque, noise and vibration concerns originating from the driveline, powertrain or vehicle structure can supersede aggressive torque converter clutch scheduling. Understanding the torsional characteristics of the torque converter clutch and its interaction with the drivetrain can lead to a more robust design, operation in regions otherwise restricted by noise and vibration, and potential fuel economy improvement.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

The Voltec 4ET50 Electric Drive System

2011-04-12
2011-01-0355
General Motors' Chevrolet Volt is an Extended Range Electric Vehicle (EREV). This car has aggressive targets for all electric range with engine off and fuel economy with the engine on. The Voltec 4ET50 transaxle has gears, clutches, and shafts and controls that execute two kinematic modes for engine off operation or Electric Vehicle (EV) operation, and two additional kinematic modes for extended range (ER) operation. The Voltec electric transaxle also has two electric motors, two inverters, and specialized motor controls to motivate to execute each of those four driving modes. Collectively these are known as the Voltec Electric drive. This paper will present the design and performance details of the Chevrolet Voltec electric drive. Both the machines of the Voltec electric drive system are permanent magnet AC synchronous machines with the magnets buried inside the rotor. The motor has distributed windings.
Technical Paper

The Simscape Language and Powertrain Applications

2013-04-08
2013-01-0822
Simscape is a physical modeling language developed by Mathworks Inc. The language uses equation statements instead of assignment statements to describe physical systems. The paper focuses on the Simscape language itself instead of using components in the Simscape libraries. The language will be introduced from a perspective different from the Mathworks' Physical Network point of view. Our perspective focuses on two types of variables at the connectors. In additional, internal variables are not separated into through and across variables. The alternative perspective is more general and easier to understand. The paper also illustrates how to develop components in a powertrain library following the proposed new perspective.
Technical Paper

The Influence of DISI Engine Operating Parameters on Particle Number Emissions

2011-04-12
2011-01-0143
The future EURO 6 emission standard will limit the particle number and mass for gasoline engines. The proposed limit for particle mass is 4.5 mg/km. For particle number there is not yet a limit defined but a wide range of proposals are under discussion (6E11 - 8E12 Particles/km) The particle emissions on a homogeneous SIDI engine are mainly caused by insufficient mixture preparation. A combustion improvement could be achieved by a careful recalibration as well as a hardware optimization that mainly avoids wall impingement and substoichiometric zones in the combustion chamber. The analyses of current SIDI vehicles show significant PN emission peaks during cold start and transient operation on a NEDC cycle. To give a better understanding of cause and effect of the particle formation at steady state results so as transient load steps were performed at an engine dynamometer.
Technical Paper

The Influence of Biodiesel Fuel Quality on Modern Diesel Vehicle Performance

2012-04-16
2012-01-0858
Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467, “Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20).” However, recent U.S. market place fuel surveys have shown that many retail biodiesel samples are out of specification. A vehicle designed to use biodiesel blends is likely to encounter occasional use of poor quality biodiesel fuel; and therefore understanding the effects of bad marketplace biodiesel fuels on engine and fuel system performance is critical to develop durable automotive technologies. The results presented herein are from vehicle evaluation studies with both on-specification and off-specification bio-based fuels. These studies focused on the performance of fuel injection equipment, engine, engine oil, emissions and emissions system durability.
Journal Article

The GM “Voltec” 4ET50 Multi-Mode Electric Transaxle

2011-04-12
2011-01-0887
The Chevrolet Volt is an electric vehicle (EV) that operates exclusively on battery power as long as useful energy is available in the battery pack under normal conditions. After the battery is depleted of available energy, extended-range (ER) driving uses fuel energy in an internal combustion engine (ICE), an on-board generator, and a large electric driving motor. This extended-range electric vehicle (EREV) utilizes electric energy in an automobile more effectively than a plug-in hybrid electric vehicle (PHEV), which characteristically blends electric and engine power together during driving. A specialized EREV powertrain, called the "Voltec," drives the Volt through its entire range of speed and acceleration with battery power alone, within the limit of battery energy, thereby displacing more fuel with electricity, emitting less CO₂, and producing less cold-start emissions than a PHEV operating in real-world conditions.
Technical Paper

The Effect of Pt-Pd Ratio on Oxidation Catalysts Under Simulated Diesel Exhaust

2011-04-12
2011-01-1134
With a tighter regulatory environment, reduction of hydrocarbon emissions has emerged as a major concern for advanced low-temperature combustion engines. Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for diesel exhaust hydrocarbon oxidation. The efficiency of hydrocarbon oxidation is greatly enhanced by employing both Pt and Pd together compared to the case with Pt or Pd alone. However, there have been few systematic studies to investigate the effects of the ratio of platinum to palladium on catalytic oxidation over the DOC. The present study illustrates the relationship between the Pt-Pd ratio and catalyst activity and stability by evaluating a series of catalysts with various Pt to Pd ratios (1:0, 7:1, 2:1, 1:2, 1:5, 0:1). These catalysts were tested for their CO and hydrocarbon light-off temperatures under simulated conditions where both unburned and partially burned hydrocarbons were present.
X