Refine Your Search

Topic

Author

Search Results

Journal Article

“Verify-on-Demand” - A Practical and Scalable Approach for Broadcast Authentication in Vehicle-to-Vehicle Communication

2011-04-12
2011-01-0584
In general for Vehicle-to-Vehicle (V2V) communication, message authentication is performed on every received wireless message by conducting verification for a valid signature, and only messages that have been successfully verified are processed further. In V2V safety communication, there are a large number of vehicles and each vehicle transmits safety messages frequently; therefore the number of received messages per second would be large. Thus authentication of each and every received message, for example based on the IEEE 1609.2 standard, is computationally very expensive and can only be carried out with expensive dedicated cryptographic hardware. An interesting observation is that most of these routine safety messages do not result in driver warnings or control actions since we expect that the safety system would be designed to provide warnings or control actions only when the threat of collision is high.
Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
Technical Paper

Visualization and Analysis of Condensation in Exhaust Gas Recirculation Coolers

2013-04-08
2013-01-0540
Cooled exhaust gas recirculation (EGR) is widely used in diesel engines to control engine-out NOx (oxides of nitrogen) emissions. A portion of the exhaust gases is re-circulated into the intake manifold of the engine after cooling it through a heat exchanger. EGR cooler heat exchangers, however, tend to lose efficiency and have increased pressure drop as deposit forms on the heat exchanger surface due to transport of soot particles and condensing species to the cooler walls. In this study, condensation of water vapor and hydrocarbons at the exit of the EGR cooler was visualized using a fiberscope coupled to a camera equipped with a complementary metal oxide semiconductor (CMOS) color sensor. A multi-cylinder diesel engine was used to produce a range of engine-out hydrocarbon concentrations. Both surface and bulk gas condensation were observed with the visualization setup over a range of EGR cooler coolant temperatures.
Technical Paper

Virtual Road Load Data Acquisition in Practice at General Motors

2011-04-12
2011-01-0025
Measured vehicle loads have traditionally been used as the basis for development of component, subsystem and vehicle level durability tests. The use of measured loads posed challenges due to the availability of representative hardware, scheduling, and other factors. In addition, stress was placed on existing procedures and methods by aggressive product development timing, variety in tuning and equipment packages, and higher levels of design optimization. To meet these challenges, General Motors developed new processes and technical competencies which enabled the direct substitution of analytically synthesized loads for measured data. This process of Virtual Road Load Data Acquisition (vRLDA) enabled (a) conformance to shortened product development cycles, (b) greater consistency between design targets and validation requirements, and (c) more comprehensive data.
Technical Paper

Vehicle Acoustic Sensitivity Performance Using Virtual Engineering

2011-04-12
2011-01-1072
In order to assess the possible ways of energy transfer from the various sources of excitation in a vehicle assembly to a given target location, frequency based substructuring technique and transfer path analysis are used. These methods help to locate the most important energy transfer paths for a specific problem, and to evaluate their individual effects on the target, thus providing valuable insight into the mechanisms responsible for the problem. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc. This paper is devoted to identify the noise transfer paths and the force transmissibility among the interfaces of different components in the vehicle for the low to mid frequency range.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Technical Paper

The Influence of Biodiesel Fuel Quality on Modern Diesel Vehicle Performance

2012-04-16
2012-01-0858
Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467, “Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20).” However, recent U.S. market place fuel surveys have shown that many retail biodiesel samples are out of specification. A vehicle designed to use biodiesel blends is likely to encounter occasional use of poor quality biodiesel fuel; and therefore understanding the effects of bad marketplace biodiesel fuels on engine and fuel system performance is critical to develop durable automotive technologies. The results presented herein are from vehicle evaluation studies with both on-specification and off-specification bio-based fuels. These studies focused on the performance of fuel injection equipment, engine, engine oil, emissions and emissions system durability.
Technical Paper

Technical Challenges in Future Electrical Architectures

2011-04-12
2011-01-1021
As part of standardizing the global portfolio, General Motors (GM) created an electrical architecture that will support the GM global product feature set. Introduced in 2009, this common electrical architecture is already being applied to multiple platforms in GM's regional engineering centers. The electrical architecture will be updated regularly to address the needs of new features in the automotive market and to take advantage of the latest technology advancements. The functional requirements of these new features result in technology challenges. In addition, many new features may result in challenges to the vehicle electrical architecture or the vehicle development process. The challenges have been evaluated so that needs and initiatives can be better understood.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Technical Paper

Seal Testing in Aerated Lubricants

2011-04-12
2011-01-1209
Typical seal immersion testing in lubricants does not aerate the lubricant as typically seen during normal operation of a transmission or axle. This paper will discuss a new test apparatus that introduces air into transmission fluids and gear oils during seal immersion testing. The seal materials selected for the testing are from current vehicle applications from several different material families. The test results compare the standard properties: change in tensile strength, elongation, hardness, and volume swell. Several tests were completed to investigate and refine the new testing method for seal compatibility testing with transmission fluids and gear oils. Initial results from the first data sets indicate that lubricant aeration helps improve test repeatability. In addition to aeration, the test results explore appropriate fluid immersion temperature for repeatability and appropriate test duration.
Technical Paper

Radiated Fuel Tank Slosh Noise Simulation

2011-04-12
2011-01-0495
With the introduction of hybrid vehicles and the associated elimination of engine and exhaust masking noises, sounds from other sources is becoming more noticeable. Fuel tank sloshing is one of these sources. Fuel sloshing occurs when a vehicle is accelerated in any direction and can create noise that may be perceived as a quality issue by the customer. To reduce slosh noise, a fuel tank has to be carefully designed. Reduction in slosh noise using test- based methods can be very costly and timely. This paper shows how, using the combination of CFD (Computational Fluid Dynamic), FE (Finite Element) and Acoustic simulation methods, the radiated fuel tank slosh noise performance can be evaluated using CAE methods. Although the de-coupled fluid /structure interaction (FSI) method was used for the examples in this paper, the acoustic simulation method is not limited to the decoupled FSI method.
Technical Paper

Powertrain Mount Load Mitigation on Hybrid and Electric Vehicles

2011-04-12
2011-01-0949
The development and validation of an electric vehicle presents numerous issues that are not normally encountered during the development of a traditional internal combustion powered vehicle. Many of the issues that are encountered involve components that are common to both electric and internal combustion vehicles but are utilized in new or unique ways that may present challenges during the development process. The integration of the electric motors, power supply, batteries, and associated content into a traditional vehicle can bring new and challenging issues to light. This paper discusses the solution for an issue that arose during the testing and development of the chassis and powertrain hardware of an electric vehicle. In particular, the large rotational inertia of the electric drive motor presented significant challenges when it was accelerated by forces that were external to the drive unit.
Technical Paper

Power Modules and Inverter Evaluation for GM Electrification Architectures

2012-04-16
2012-01-0340
GM has recently developed two kinds of vehicle electrification architectures. First is VOLTec, a heavy electrification architecture, and second is eAssist, a light electrification architecture. An overview, of IGBT power modules & inverters used in VOLTec and eAssist, is presented. Alternative power modules from few cooperative suppliers are also described in a benchmarking study using key metrics. Inverter test set up, procedure and instrumentation used in GM Power Electronics Development Lab, Milford are described. GM electrification journey depends on Power Electronics lab' passive test benches; double pulse tester, inductive resistive load bench and active emulator test cell without electric machines. Such test benches are preferred before dyne test cells are used for inverter software/hardware integration and motor durability tests cycles. Specific test results are presented.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

2012-04-16
2012-01-1101
This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Technical Paper

Multi-Disciplinary Analyses for Brake Fluid Temperature Evaluation

2013-04-08
2013-01-0635
During braking events, a brake corner sustains high brake torque, generating a large amount of heat in the process. This is most significant during mountain descent events and vehicle race track events. The brake thermal events not only reduce brake friction coefficient and lining life, but also produce elevated brake fluid temperature. Traditionally, brake hardware testing is warranted to evaluate brake fluid temperature for high speed flat track and mountain descent. These tests are costly and time-consuming. A CAE process to predict brake fluid temperature early in the vehicle development process before hardware exists, and to reduce and to replace testing will greatly benefit the vehicle development process. To this end, multiple analyses can be run. The heat transfer coefficients and cooling coefficients were evaluated from relevant CFD analyses.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Technical Paper

Modeling of Battery Pack Thermal System for a Plug-In Hybrid Electric Vehicle

2011-04-12
2011-01-0666
Fuel economy and stringent emissions requirements have steered the automotive industry to invest in advanced propulsion hybrids, including Plug-in hybrid vehicles (PHEV) and Fuel cell vehicles. The choice of battery technology, its power and thermal management and the overall vehicle energy optimization during different conditions are crucial design considerations for PHEVs and battery electric vehicles (BEV). Current industry focus is on Li-Ion batteries due to their high energy density. However, extreme operating temperatures may impact battery life and performance. Different cooling strategies have been proposed for efficient thermal management of battery systems. This paper discusses the modeling and analysis strategy for a thermally managed Lithium Ion (Li-Ion) battery pack, with coolant as the conditioning medium.
X