Refine Your Search

Topic

Author

Search Results

Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Journal Article

Virtual Manufacturability Analyzer for Casting Components

2011-04-12
2011-01-0528
There is an increasing demand in automated manufacturability analysis of metal castings at the initial stages of their design. This paper presents a system developed for virtual manufacturability analysis of casting components. The system can be used by a casting designer to evaluate manufacturability of a part designed for various manufacture processes including casting, heat treatment, and machining. The system uses computational geometrics and geometric reasoning to extract manufacturing features and geometry characteristics from a part CAD model. It uses an expert system and a design database consisting of metal casting, heat treatment and machining process knowledge and rules to present manufacturability analysis results and advice to the designer. Application of the system is demonstrated for the manufacturability assessment of automotive cast aluminum components.
Journal Article

The Front Center Airbag

2013-04-08
2013-01-1156
General Motors and the Takata Corporation have worked together to bring to production a new, industry first technology called the Front Center Airbag which is being implemented on General Motors' 2013 Midsize Crossover Vehicles. This paper reviews field data, describes the hardware, and presents occupant test data to demonstrate in-position performance in far side impacts. The Front Center Airbag is an airbag that mounts to the inboard side of the driver front seat. It has a tubular cushion structure, and it deploys between the front seating positions in far side impacts, near side impacts and rollovers, with the cushion positioning itself adjacent the driver occupant's head and torso. This paper includes pictures of the technology along with a basic description of the design. In-position occupant performance is also described and illustrated with several examples. Single occupant and two front occupant far side impact test data are included, both with and without the airbag present.
Journal Article

The Effect of Surface Finish on Aluminum Sheet Friction Behavior

2011-04-12
2011-01-0534
Aluminum sheet is commercially available in three surface finishes, mill finish (MF), electric discharge texture (EDT), and dull finish (DF). This surface finish impacts the friction behavior during sheet metal forming. A study was done to compare ten commercially available sheet samples from several suppliers. The friction behavior was characterized in the longitudinal and transverse directions using a Draw Bead Simulator (DBS) test, resulting in a coefficient of friction (COF) value for each material. Characterization of the friction behavior in each direction provides useful data for formability analysis. To quantitatively characterize the surface finish, three-dimensional MicroTexture measurements were done with a WYKO NT8000 instrument. In general, the MF samples have the smoothest surface, with Sa values of 0.20-0.30 μm and the lowest COF values. The EDT samples have the roughest surface, with Sa values of 0.60-1.00 μm, and the highest COF values.
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Self-Pierce Riveting of Magnesium to Aluminum Alloys

2011-04-12
2011-01-0074
Magnesium and aluminum alloys offer lightweighting opportunities in automotive applications. Joining of dissimilar materials, however, generally requires methods that do not involve fusion. This paper explores the use of self-pierce riveting (SPR) to join magnesium to aluminum alloys for structural and closure applications. The preliminary results indicate that SPR is a viable option for joining aluminum extrusions to magnesium die castings, as well as stamped sheet aluminum to quick-plastic-formed (QPF) sheet magnesium.
Technical Paper

Safety Belt and Occupant Factors Influencing Thoracic & Upper Abdominal Injuries in Frontal Crashes

2011-04-12
2011-01-1129
This paper reports on a study that examines the effect of shoulder belt load limiters and pretensioners as well as crash and occupant factors that influence upper torso harm in real-world frontal crashes. Cases from the University of Michigan International Center for Automotive Medicine (ICAM) database were analyzed. Additional information was used from other databases including the National Highway Traffic Safety Administration (NHTSA) New Car Assessment Program (NCAP), the Insurance Institute for Highway Safety (IIHS), the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS), and patient data available from the University of Michigan Trauma Center. The ICAM database is comprised of information from real-world crashes in which occupants were seriously injured and required treatment at a Level 1 Trauma Center.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Technical Paper

Probability of a Crash During Plug-in Charging

2011-04-12
2011-01-1008
Plug-in electric vehicles are becoming increasingly popular as the U.S. and other nations look for ways to reduce the usage of petroleum fuels and reduce the carbon emission footprint. Though plug-in electric vehicles offer many advantages over conventional vehicles, they also present some unique potential hazards due to the presence of high voltage in the vehicle. Specifically, potential high voltage hazards can occur if the electric vehicle is crashed by another vehicle during its plug-in charging session. High voltage hazards include the possibility of electrical shock and thermal events as a result of electrical arcing that can cause injury or death to persons that operate or work around plug-in electric vehicles. Automotive Safety Integrity Level (ISO 26262), often abbreviated as ASIL, is used by the automotive industry for determining the ranking of safety hazards.
Technical Paper

Pressure Sensor Simulation Capability for Side Impact Sensing Calibration

2011-04-12
2011-01-0105
There is a growing interest in using pressure sensors to sense side impacts, where the pressure change inside the door cavity is monitored and used to discriminate trigger and non-trigger incidents. In this paper, a pressure sensor simulation capability for side impact sensing calibration is presented. The ability to use simulations for side impact sensing calibration early in the vehicle program development process could reduce vehicle development cost and time. It could also help in evaluating sensor locations by studying the effects of targeted impact points and contents in the door cavity. There are two modeling methods available in LS-DYNA for predicting pressure change inside a cavity, namely airbag method and fluid structure interaction method. A suite of side impact calibration events of a study vehicle were simulated using these two methods. The simulated door cavity pressure time histories were then extracted to calibrate the side sensing system of the study vehicle.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Journal Article

Modeling/Analysis of Pedestrian Back-Over Crashes from NHTSA's SCI Database

2011-04-12
2011-01-0588
An analysis of the first 35 back-over crashes reported by NHTSA's Special Crash Investigations unit was undertaken with two objectives: (1) to test a hypothesized classification of backing crashes into types, and (2) to characterize scenario-specific conditions that may drive countermeasure development requirements and/or objective test development requirements. Backing crash cases were sorted by type, and then analyzed in terms of key features. Subsequent modeling of these SCI cases was done using an adaptation of the Driving Reliability and Error Analysis Methodology (DREAM) and Cognitive Reliability and Error Analysis Methodology (CREAM) (similar to previous applications, for instance, by Ljung and Sandin to lane departure crashes [10]), which is felt to provide a useful tool for crash avoidance technology development.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Investigation of Stamping Tooling Durability for Dual Phase Steels

2011-04-12
2011-01-1060
Advanced High-Strength Steels (AHSS) have become an essential part of the lightweighting strategy for automotive body structures. The ability to fully realize the benefits of AHSS depends upon the ability to aggressively form, trim, and pierce these steels into challenging parts. Tooling wear has been a roadblock to stamping these materials. Traditional die materials and designs have shown significant problems with accelerated wear, galling and die pickup, and premature wear and breakage of pierce punches. [1] This paper identifies and discusses the tribological factors that contribute to the successful stamping of AHSS. This includes minimizing tool wear and galling/die pick-up; identifying the most effective pierce clearance (wear vs. burr height) when piercing AHSS; and determining optimal die material and coating performance for tooling stamping AHSS.
Technical Paper

Intersection Management using Vehicular Networks

2012-04-16
2012-01-0292
Driving through intersections can be potentially dangerous because nearly 23 percent of the total automotive related fatalities and almost 1 million injury-causing crashes occur at or within intersections every year [1]. The impact of traffic intersections on trip delays also leads to waste of human and natural resources. Our goal is to increase the safety and throughput of traffic intersections using co-operative driving. In earlier work [2], we have proposed a family of vehicular network protocols, which use Dedicated Short Range Communications (DSRC) and Wireless Access in Vehicular Environment (WAVE) technologies to manage a vehicle's movement at intersections Specifically, we have provided a collision detection algorithm at intersections (CDAI) to avoid potential crashes at or near intersections and improve safety. We have shown that vehicle-to-vehicle (V2V) communications can be used to significantly decrease the trip delays introduced by traffic lights and stop signs.
Technical Paper

Improvements in Simulations of Aortic Loading by Filling in Voids of the Global Human Body Model

2020-03-31
2019-22-0021
Internal organ injuries of the chest are one of the leading causes of deaths in motor vehicle crashes. The issue of initial presence and dynamic formation of voids around the heart and aorta is addressed to improve kinematics, force interaction and injury risk assessment of these organs of the Global Human Body Model. Steps to fill the voids are presented.
Journal Article

Idealized Vehicle Crash Test Pulses for Advanced Batteries

2013-04-08
2013-01-0764
This paper reports a study undertaken by the Crash Safety Working Group (CSWG) of the United States Council for Automotive Research (USCAR) to determine generic acceleration pulses for testing and evaluating advanced batteries subjected to inertial loading for application in electric passenger vehicles. These pulses were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used in this study. Crash test data, in terms of acceleration time histories, were collected from various crash modes conducted by the National Highway Traffic Safety Administration (NHTSA) during their New Car Assessment Program (NCAP) and Federal Motor Vehicle Safety Standards (FMVSS) evaluations, and the Insurance Institute for Highway Safety (IIHS).
X