Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Technical Paper

Volume and Pressure Considerations in Human Body Modeling

2020-03-31
2019-22-0020
The initial presence and dynamic formation of internal voids in human body models have been subjects of discussion within the human body modeling community. The relevant physics of the human body are described and the importance of capturing this physics for modeling of internal organ interactions is demonstrated. Basic modeling concepts are discussed along with a proposal of simulation setups designed to verify model behavior in terms of volume and pressure between internal organs.
Technical Paper

Visualization and Analysis of Condensation in Exhaust Gas Recirculation Coolers

2013-04-08
2013-01-0540
Cooled exhaust gas recirculation (EGR) is widely used in diesel engines to control engine-out NOx (oxides of nitrogen) emissions. A portion of the exhaust gases is re-circulated into the intake manifold of the engine after cooling it through a heat exchanger. EGR cooler heat exchangers, however, tend to lose efficiency and have increased pressure drop as deposit forms on the heat exchanger surface due to transport of soot particles and condensing species to the cooler walls. In this study, condensation of water vapor and hydrocarbons at the exit of the EGR cooler was visualized using a fiberscope coupled to a camera equipped with a complementary metal oxide semiconductor (CMOS) color sensor. A multi-cylinder diesel engine was used to produce a range of engine-out hydrocarbon concentrations. Both surface and bulk gas condensation were observed with the visualization setup over a range of EGR cooler coolant temperatures.
Journal Article

Virtual Manufacturability Analyzer for Casting Components

2011-04-12
2011-01-0528
There is an increasing demand in automated manufacturability analysis of metal castings at the initial stages of their design. This paper presents a system developed for virtual manufacturability analysis of casting components. The system can be used by a casting designer to evaluate manufacturability of a part designed for various manufacture processes including casting, heat treatment, and machining. The system uses computational geometrics and geometric reasoning to extract manufacturing features and geometry characteristics from a part CAD model. It uses an expert system and a design database consisting of metal casting, heat treatment and machining process knowledge and rules to present manufacturability analysis results and advice to the designer. Application of the system is demonstrated for the manufacturability assessment of automotive cast aluminum components.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Understanding CAE Needs for Data on Plastics - A Materials Engineer's Perspective

2011-04-12
2011-01-0015
Delivering the appropriate material data for CAE analysis of plastic components is not as straight forward as it would seem to be. While a few of the properties typically used by resin manufacturers and material engineers to describe a plastic are useful to the analysis community (density, CLTE), most are not (flexural modulus, notched izod). In addition some properties such as yield stress are defined differently by the analysis community than by the materials community. Lastly, secondary operations such as painting or chrome plating significantly change the behavior of components with plastic substrates. The materials engineering community and the CAE analysis community must work together closely to develop the material data necessary to increase the capability of the analysis. This paper will examine case studies where these issues have required modifications to the material property data to increase the fidelity of the CAE analysis.
Technical Paper

Ultracapacitor Based Active Energy Recovery Scheme for Fuel Economy Improvement in Conventional Vehicles

2011-04-12
2011-01-0345
In this paper, a low-cost means to improve fuel economy in conventional vehicles by employing ultracapacitor based Active Energy Recovery Buffer (AERB) scheme will be presented. The kinetic energy of the vehicle during the coast down events is utilized to charge the ultracapacitor either directly or through a dc-dc converter, allowing the voltage to increase up to the maximum permissible level. When the vehicle starts after a Stop event, the energy stored in the capacitor is discharged to power the accessory loads until the capacitor voltage falls below a minimum threshold. The use of stored capacitor energy to power the accessory loads relieves the generator torque load on the engine resulting in reduced fuel consumption. Two different topologies are considered for implementing the AERB system. The first topology, which is a simple add-on to the conventional vehicle electrical system, comprises of the ultracapacitor bank and the dc-dc converter connected across the dc bus.
Technical Paper

Trivial Principal Component Analysis (TPCA): An Improved Modeling Approach

2017-03-28
2017-01-0220
Trivial Principal Component method (TPC) was developed recently to model a system based on measured data. It is a statistical method that utilizes Eigen-pairs of covariance matrix obtained from the measured data. It determines linear coefficients of a model by using the trivial eigenvector corresponding to the least eigenvalue. In general, linear modeling accuracy depends on the strength of nonlinearity and interaction terms as well as measurement error. In this paper, the TPC method is extended to analyze residual (error) vector to identify significant higher order and interaction terms that contribute to the modeling error. Subsequently, these additional terms are included for constructing a robust system model. Also, an iterative TPC analysis is proposed for the first time to correct the model gradually till the least eigenvalue becomes minimum.
Technical Paper

Transmission Virtual Torque Sensor - Absolute Torque Estimation

2012-04-16
2012-01-0111
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by the transmission. Clearly, torque regulation is important for transmission control. Unfortunately, a physical torque sensor has been too costly for production applications. With no torque measurement for feedback, controls in AT is mainly implemented in an open-loop fashion. Therefore, complicated adaptation algorithms are necessary while undesired shifts may still occur. To further simplify the controls and enhance its consistency and robustness, a direct torque feedback has long been desired in transmission control synthesis and development. A “virtual” torque sensor (VTS) algorithm has recently been developed to show a good potential in estimating relative torque along transmission output shaft using transmission output speed sensor and wheel speed sensors.
Technical Paper

Transmission Algorithm Development using System Simulation (Virtual Vehicle)

2011-04-12
2011-01-1233
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have had to cope with increasing levels of system complexity while at the same time being forced by the marketplace to improve system quality, reduce development costs, and improve time to market. General Motors Powertrain (GMPT) chose to meet these challenges through General Motors Company's Road-to-Lab-to-Math (RLM) strategy, particularly the Math-based method of a virtual vehicle simulation environment called System Simulation. The use of System Simulation to develop transmission control algorithms has enabled GMPT to improve product quality and reduce development times and costs associated with the dependence on physical prototypes. Additionally, System Simulation has facilitated the reuse of GMPT controls development assets, improving overall controls development efficiency.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Technical Paper

Thermal Comfort Prediction and Validation in a Realistic Vehicle Thermal Environment

2012-04-16
2012-01-0645
The focus of this study is to validate the predictive capability of a recently developed physiology based thermal comfort modeling tool in a realistic thermal environment of a vehicle passenger compartment. Human subject test data for thermal sensation and comfort was obtained in a climatic wind tunnel for a cross-over vehicle in a relatively warm thermal environment including solar load. A CFD/thermal model that simulates the vehicle operating conditions in the tunnel, is used to provide the necessary inputs required by the stand-alone thermal comfort tool. Comparison of the local and the overall thermal sensation and comfort levels between the human subject test and the tool's predictions shows a reasonably good agreement. The next step is to use this modeling technique in designing and developing energy-efficient HVAC systems without compromising thermal comfort of the vehicle occupants.
Technical Paper

The Simulation of Air Induction Noise Using 1D-3D Coupling

2011-04-12
2011-01-0500
Compartment noise has gained significant importance to meet customer expectation. One of the sources of noise is air intake noise. Intake noise is produced by both opening and closing of the inlet valve. This makes source noise critical to the development of air induction system. The new approach has been thought for noise analysis of Air Induction System (AIS) to identify source noise using 1D-3D coupling. It is very difficult to simulate engine and air induction system in Computational Fluid Dynamics (CFD) due to complexities in geometry. The objective of the present study is to predict the pulsed noise and flow noise using 1D-3D coupling. The engine with 1D code and AIS with 3D CFD code is simulated. Engine pulsation from GT-Power is provided as an input boundary condition to ANSYS Fluent. GT-Power exchanges boundary values to 3D computation domain at each CFD time step through special connections. The CFD code is run with implicit discretisation scheme and SAS turbulence model.
Technical Paper

The Simscape Language and Powertrain Applications

2013-04-08
2013-01-0822
Simscape is a physical modeling language developed by Mathworks Inc. The language uses equation statements instead of assignment statements to describe physical systems. The paper focuses on the Simscape language itself instead of using components in the Simscape libraries. The language will be introduced from a perspective different from the Mathworks' Physical Network point of view. Our perspective focuses on two types of variables at the connectors. In additional, internal variables are not separated into through and across variables. The alternative perspective is more general and easier to understand. The paper also illustrates how to develop components in a powertrain library following the proposed new perspective.
Technical Paper

The Influence of DISI Engine Operating Parameters on Particle Number Emissions

2011-04-12
2011-01-0143
The future EURO 6 emission standard will limit the particle number and mass for gasoline engines. The proposed limit for particle mass is 4.5 mg/km. For particle number there is not yet a limit defined but a wide range of proposals are under discussion (6E11 - 8E12 Particles/km) The particle emissions on a homogeneous SIDI engine are mainly caused by insufficient mixture preparation. A combustion improvement could be achieved by a careful recalibration as well as a hardware optimization that mainly avoids wall impingement and substoichiometric zones in the combustion chamber. The analyses of current SIDI vehicles show significant PN emission peaks during cold start and transient operation on a NEDC cycle. To give a better understanding of cause and effect of the particle formation at steady state results so as transient load steps were performed at an engine dynamometer.
Technical Paper

The Effect of Pt-Pd Ratio on Oxidation Catalysts Under Simulated Diesel Exhaust

2011-04-12
2011-01-1134
With a tighter regulatory environment, reduction of hydrocarbon emissions has emerged as a major concern for advanced low-temperature combustion engines. Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for diesel exhaust hydrocarbon oxidation. The efficiency of hydrocarbon oxidation is greatly enhanced by employing both Pt and Pd together compared to the case with Pt or Pd alone. However, there have been few systematic studies to investigate the effects of the ratio of platinum to palladium on catalytic oxidation over the DOC. The present study illustrates the relationship between the Pt-Pd ratio and catalyst activity and stability by evaluating a series of catalysts with various Pt to Pd ratios (1:0, 7:1, 2:1, 1:2, 1:5, 0:1). These catalysts were tested for their CO and hydrocarbon light-off temperatures under simulated conditions where both unburned and partially burned hydrocarbons were present.
Technical Paper

The Development of Advanced 2-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions

2011-04-12
2011-01-1140
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
X