Refine Your Search

Topic

Author

Search Results

Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Journal Article

Virtual Manufacturability Analyzer for Casting Components

2011-04-12
2011-01-0528
There is an increasing demand in automated manufacturability analysis of metal castings at the initial stages of their design. This paper presents a system developed for virtual manufacturability analysis of casting components. The system can be used by a casting designer to evaluate manufacturability of a part designed for various manufacture processes including casting, heat treatment, and machining. The system uses computational geometrics and geometric reasoning to extract manufacturing features and geometry characteristics from a part CAD model. It uses an expert system and a design database consisting of metal casting, heat treatment and machining process knowledge and rules to present manufacturability analysis results and advice to the designer. Application of the system is demonstrated for the manufacturability assessment of automotive cast aluminum components.
Technical Paper

Understanding CAE Needs for Data on Plastics - A Materials Engineer's Perspective

2011-04-12
2011-01-0015
Delivering the appropriate material data for CAE analysis of plastic components is not as straight forward as it would seem to be. While a few of the properties typically used by resin manufacturers and material engineers to describe a plastic are useful to the analysis community (density, CLTE), most are not (flexural modulus, notched izod). In addition some properties such as yield stress are defined differently by the analysis community than by the materials community. Lastly, secondary operations such as painting or chrome plating significantly change the behavior of components with plastic substrates. The materials engineering community and the CAE analysis community must work together closely to develop the material data necessary to increase the capability of the analysis. This paper will examine case studies where these issues have required modifications to the material property data to increase the fidelity of the CAE analysis.
Technical Paper

The Influence of DISI Engine Operating Parameters on Particle Number Emissions

2011-04-12
2011-01-0143
The future EURO 6 emission standard will limit the particle number and mass for gasoline engines. The proposed limit for particle mass is 4.5 mg/km. For particle number there is not yet a limit defined but a wide range of proposals are under discussion (6E11 - 8E12 Particles/km) The particle emissions on a homogeneous SIDI engine are mainly caused by insufficient mixture preparation. A combustion improvement could be achieved by a careful recalibration as well as a hardware optimization that mainly avoids wall impingement and substoichiometric zones in the combustion chamber. The analyses of current SIDI vehicles show significant PN emission peaks during cold start and transient operation on a NEDC cycle. To give a better understanding of cause and effect of the particle formation at steady state results so as transient load steps were performed at an engine dynamometer.
Technical Paper

The Influence of Biodiesel Fuel Quality on Modern Diesel Vehicle Performance

2012-04-16
2012-01-0858
Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467, “Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20).” However, recent U.S. market place fuel surveys have shown that many retail biodiesel samples are out of specification. A vehicle designed to use biodiesel blends is likely to encounter occasional use of poor quality biodiesel fuel; and therefore understanding the effects of bad marketplace biodiesel fuels on engine and fuel system performance is critical to develop durable automotive technologies. The results presented herein are from vehicle evaluation studies with both on-specification and off-specification bio-based fuels. These studies focused on the performance of fuel injection equipment, engine, engine oil, emissions and emissions system durability.
Journal Article

The Effect of Surface Finish on Aluminum Sheet Friction Behavior

2011-04-12
2011-01-0534
Aluminum sheet is commercially available in three surface finishes, mill finish (MF), electric discharge texture (EDT), and dull finish (DF). This surface finish impacts the friction behavior during sheet metal forming. A study was done to compare ten commercially available sheet samples from several suppliers. The friction behavior was characterized in the longitudinal and transverse directions using a Draw Bead Simulator (DBS) test, resulting in a coefficient of friction (COF) value for each material. Characterization of the friction behavior in each direction provides useful data for formability analysis. To quantitatively characterize the surface finish, three-dimensional MicroTexture measurements were done with a WYKO NT8000 instrument. In general, the MF samples have the smoothest surface, with Sa values of 0.20-0.30 μm and the lowest COF values. The EDT samples have the roughest surface, with Sa values of 0.60-1.00 μm, and the highest COF values.
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Journal Article

Study of the Motion of Floating Piston Pin against Pin Bore

2013-04-08
2013-01-1215
One of the major problems that the automotive industry faces is reducing friction to increase efficiency. Researchers have shown that 30% of the fuel energy was consumed to overcome the friction forces between the moving parts of any automobile, Holmberg et al. [1]. The interface of the piston pin and pin bore is one of the areas that generate high friction under severe working conditions of high temperature and lack of lubrication. In this research, experimental investigation and theoretical simulation have been carried out to analyze the motion of the floating pin against pin bore. In the experimental study, the focus was on analyzing the floating pin motion by using a bench test rig to simulate the floating pin motion in an internal combustion engine. A motion data acquisition system was developed to capture and record the pin motion. Thousands of images were recorded and later analyzed by a code written by MATLAB.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Self-Pierce Riveting of Magnesium to Aluminum Alloys

2011-04-12
2011-01-0074
Magnesium and aluminum alloys offer lightweighting opportunities in automotive applications. Joining of dissimilar materials, however, generally requires methods that do not involve fusion. This paper explores the use of self-pierce riveting (SPR) to join magnesium to aluminum alloys for structural and closure applications. The preliminary results indicate that SPR is a viable option for joining aluminum extrusions to magnesium die castings, as well as stamped sheet aluminum to quick-plastic-formed (QPF) sheet magnesium.
Technical Paper

Plating on Plastics - Adhesion Testing

2011-04-12
2011-01-0226
Decoratively plated plastic parts continue to be in high demand. One of the essential and challenging features of these finished goods is the adhesion between the metal plating and the plastic. As is the case with any bond between metals and plastics, combating the force from dissimilar thermal growth is an ongoing concern. When a plated plastic part is frozen and the plastic contracts, the failure mode for the plating manifests as a blister or “worm track”. On the other hand, when high heat causes plating failures from growth of the plastic, the problem is one of cracking in the plating. In this study, two methods are discussed that provide insight into the strength of the bond between the metal plating and the ABS and ABS+PC plastics. Peel testing is one means to evaluate the strength of the plating to plastic bond. Peel testing methodology and results are reported for both ABS and ABS+PC samples. A second means to evaluate the bond strength is through thermal cycle testing.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

2012-04-16
2012-01-1101
This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Technical Paper

Model-Based Analysis and Optimization of Turbocharged Diesel Engines with a Variable Geometry Compressor and Turbine System

2012-04-16
2012-01-0716
In the last few years, the application of downsizing and turbocharging to internal combustion engines has considerably increased due to the proven potential of this technology to increase engine efficiency. Variable geometry turbines have been largely adopted to optimize the exhaust energy recovery over a large operating range. Two-stage turbocharger systems have also been studied as a solution to improve engine low-end torque and efficiency, with the first units currently available on the market. However, the compressor technology is today still based on fixed geometry machines, which are sized to efficiently operate at the maximum air flow and therefore lead to poor efficiency values at low air flow conditions. Furthermore, the surge limits prevents the full capabilities of VGT systems to increase the boosting at low engine speed.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Investigation of Stamping Tooling Durability for Dual Phase Steels

2011-04-12
2011-01-1060
Advanced High-Strength Steels (AHSS) have become an essential part of the lightweighting strategy for automotive body structures. The ability to fully realize the benefits of AHSS depends upon the ability to aggressively form, trim, and pierce these steels into challenging parts. Tooling wear has been a roadblock to stamping these materials. Traditional die materials and designs have shown significant problems with accelerated wear, galling and die pickup, and premature wear and breakage of pierce punches. [1] This paper identifies and discusses the tribological factors that contribute to the successful stamping of AHSS. This includes minimizing tool wear and galling/die pick-up; identifying the most effective pierce clearance (wear vs. burr height) when piercing AHSS; and determining optimal die material and coating performance for tooling stamping AHSS.
Technical Paper

Individual Cylinder Air-Fuel Ratio Control Part I: L3 and V6 Engine Applications

2011-04-12
2011-01-0695
A frequency-domain approach to balancing of air-fuel ratio (A/F) in a multi-cylinder engine is described. The technique utilizes information from a single Wide-Range Air-Fuel ratio (WRAF) or a single switching (production) O₂ sensor installed in the exhaust manifold of an internal combustion engine to eliminate the imbalances. At the core of the proposed approach is the development of a simple novel method for the characterization of A/F imbalances among the cylinders. The proposed approach provides a direct objective metric for the characterization of the degree of A/F imbalances for diagnostic purposes as well as a methodology for the control of A/F imbalances among various cylinders. The fundamental computational requirement is based on the calculation of a Discrete Fourier Transform (DFT) of the A/F signal as measured by a WRAF or a switching O₂ sensor.
X