Refine Your Search

Topic

Author

Search Results

Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

1994-03-01
940748
Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

The Northstar DOHC V-8 Engine for Cadillac

1992-02-01
920671
General Motors Powertrain Division has developed a new V-8 engine for Cadillac vehicles in the 1990s. The Northstar engine incorporates the use of aluminum for both the cylinder block and head and other lightweight materials throughout. The valve train incorporates direct acting hydraulic lifters actuating the four valves per cylinder through dual overhead camshafts. The primary focus of the project has been to produce an engine of unquestioned reliability and exceptional value which is pleasing to the customer throughout the range of loads and speeds. The engine was designed with a light weight valve train, low valve overlap and moderate lift, resulting in a very pleasing combination of smooth idle and a broad range of power. The use of analytical methods early in the design stage enabled systems to be engineered to optimize reliability, pleaseability and value by reducing frictional losses, noise, and potential leak paths, while increasing efficiency and ease of manufacture.
Technical Paper

The Electronically Controlled 6.5L Diesel Engine

1993-11-01
932983
For model year 1994, General Motors has completed the roll out of the 6.5L Diesel Engine, with the introduction of the light duty certified naturally aspirated and turbocharged engines. At the heart of the expanded use of the 6.5L is a new electronic powertrain control system. The objectives for this system were to produce an engine that has less variation, is easier to assemble, low cost and capable of meeting both heavy and light duty future emissions requirements. Control features include Fuel Quantity and Timing, EGR, Wastegate, Glow Plugs, Transmission, Cruise Control and Diagnostics.
Technical Paper

The Design of Passenger Car Cast Aluminum Wheels

1983-02-01
830016
Permanent mold cast aluminum wheels have been widely used as original equipment on passenger cars for a number of years. Testing and field experience together with manufacturing and plant processing experience has resulted in the development of a number of recommended design practices which are outlined in this paper. Methods used to test that design requirements have been met will be presented. Basic wheel designs, rigid and flexible, will be discussed together with the currently used mounting face configurations. Detail design features such as rim contour, nut boss, valve hole, hub pilot, mounting face and window openings will be reviewed. Future design and manufacturing trends will be discussed.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

The Automotive Primary Power Supply System

1974-02-01
741208
This paper describes the major electrical characteristics of the automotive power supply system. It is a compilation of existing data and new information that will be helpful to both the electrical component and electronic assembly designers. Previously available battery/alternator data is organized to be useful to the designer. New dynamic information on battery impedance is displayed along with “cogging” transients, regulation limits and load dump characteristics.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Robust Weld Verification for Chassis Structure

1996-08-01
961776
The development of a major structural welded assembly is a lengthy and expensive project. The design and the development must generate a product that meets requirements and customer expectations. Product engineers and test engineers developing structural weldments are the target audience for this paper. The purpose of this paper is to describe a Design Of Experiments approach that was developed which helps provide qualitative information on a structural weldment's sensitivity to MIG weld variation.
Technical Paper

Robust Process Design for a Four-Bar Decklid Hinge System

2003-03-03
2003-01-0878
Auto components with large manufacturing variation may cause vehicle quality problems after they are assembled. The impact of this variation depends on the assembly process used. If the assembly process is sensitive to the component variation, the impact may be more significant. In this case, an assembly process with lower sensitivity to component variation will solve the problem. This paper presents an example where the component variation largely impacted the quality of the car, and a more robust assembly process solved the problem.
Technical Paper

Reliability and Maintainability of Machinery and Equipment for Effective Maintenance

1993-03-01
930569
Typically, “Reliability and Maintainability (R&M)” is perceived as a tool for products alone. Putting emphasis on reliability only at the cost of maintainability is another archetype. Inclusion of both reliability and maintainability (R&M) in all the phases of the machinery and equipment (M&E) life cycle is required in order to be world competitive in manufacturing. R&M is mainly a design function and it should be a part of any design review. Inclusion of the R&M concept early in the life cycle of M&E is key to cost effective and competitive manufacturing. Neither responsive manufacturing nor preventive maintenance can raise it above the level of inherent R&M.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Reducing Catalytic Converter Pressure Loss with Enhanced Inlet-Header Diffusion

1995-10-01
952398
The function of the inlet header of a catalytic converter is to diffuse the inlet exhaust flow, decreasing its velocity and increasing its static pressure with as little loss in total pressure as possible. In practice, very little diffusion takes place in most catalytic converter inlet headers because the flow separates at the interface of the pipe and the tapered section leading to the substrate. This leads to increased converter pressure loss and flow maldistribution. An improved inlet-header design called the Enhanced Diffusion Header (EDH) was developed which combines a short, shallow-angle diffuser with a more abrupt expansion to the substrate cross section. Tests conducted in room air (cold flow) and engine exhaust showed that improved inlet-jet diffusion leads to substantial reductions in converter restriction. EDH performance was not compromised by the presence of a right-angle bend upstream of the converter.
Technical Paper

Nylon RIM Development for Automotive Body Panels

1985-02-01
850157
The performance and production requirements for future passenger vehicles has increased the efforts to replace metal body panels with plastic materials. This has been accomplished, to a large extent on some production vehicles that have been introduced recently. Unfortunately, these plastic body applications have necessitated special off-line handling or low temperature paint processing. However, the advantages of RIM nylon, offer the potential for uniquely new plastic body designs, that can be processed through existing assembly plants, much like the steel panels they are intended to replace. The intent of this paper is to discuss the rationale for future plastic body panel material selection and related nylon RIM development efforts.
Technical Paper

Multivariate Robust Design

2005-04-11
2005-01-1213
In a complex system, large numbers of design variables and responses are involved in performance analysis. Relationships between design variables and individual responses can be complex, and the outcomes are often competing. In addition, noise from manufacturing processes, environment, and customer misusage causes variation in performance. The proposed method utilizes the two-step optimization process from robust design and performs the optimization on multiple responses using Hotelling's T2 statistic. The application of the T2-statistic allows the use of univariate tools in multiple objective problems. Furthermore, the decomposition of T20 into a location component, T2M and a dispersion component, T2D substitutes a complex multivariate optimization process with the simpler two-step procedure. Finally, using information from the experiment, a multivariate process capability estimates for the design can be made prior to hardware fabrication.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Low-Power Flexible Controls Architecture for General Motors Partnership for a New Generation (Pngv) Precept Vehicle

2000-11-01
2000-01-C060
The complexity of designing and implementing a vehicle electrical control system for ultra fuel-efficient hybrid vehicles is significantly greater than that of a conventional vehicle. To quickly demonstrate and iterate capabilities of these vehicles, an efficient and rapid means for developing requirements, mapping these into an electrical control and communications architecture, and developing prototype systems is needed. The General Motors Precept concept vehicle is an example of an energy- efficient vehicular control system developed using a "requirements to software'' development process and electronic controller infrastructure that demonstrates these attributes. The Precept is General Motors Corporation's technology demonstration concept vehicle developed to address General Motors Corporation's commitment to the Partnership for a New Generation (PNGV) program.
Technical Paper

Life Cycle Analysis Framework; A Comparison of HFC-134a, HFC-134a Enhanced, HFC-152a, R744, R744 Enhanced, and R290 Automotive Refrigerant Systems

2005-04-11
2005-01-1511
The goal of this study is to assess the total Life Cycle Global Warming Impact of the current HFC-134a (R134a) refrigeration system and compare it with the effect of proposed alternatives, HFC-134a Enhanced, HFC-152 (R152a), R744, R744 Enhanced and R290, based on life cycle analysis (LCA). The enhanced systems include control strategies to elevate the compressor suction pressure as the evaporator load is reduced. The hydrofluorocarbons HFC-134a and HFC-152a are greenhouse gases (GHGs) and are subject to the Kyoto Protocol timetables, which when the treaty takes effect will require participating developed countries to reduce their overall CO2 equivalent emissions of six GHGs by at least 5% by 2012 from 1990 levels.
X