Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

The Effects of Trip Length and Oil Type (Synthetic Versus Mineral Oil) on Engine Damage and Engine-Oil Degradation in a Driving Test of a Vehicle with a 5.7L V-8 Engine

1993-10-01
932838
Extending engine-oil-change intervals is of interest from the standpoint of reducing used oil disposal and reducing time and expense of maintenance. However, the oil must be changed before serious oil degradation and engine damage occur. Three variables which influence oil degradation were chosen for investigation: base oil composition (synthetic oil versus mineral oil), trip length (short trips versus long trips), and driving schedule (degrading an oil during a given type of service, then changing to another type of service without an intervening oil change). Analysis of oil samples taken throughout the testing program indicated that type of service (freeway compared to short trip) influenced oil degradation to a greater extent than oil type. That is, API SG-quality synthetic oil in short-trip service degraded faster than borderline SG-quality mineral oil in long-trip service.
Technical Paper

The Effect of Exhaust System Geometry on Exhaust Dilution and Odor Intensity

1971-02-01
710219
Diesel exhaust gas dilution and odor intensity were measured in the immediate vicinity of a transit bus equipped with a rear-mounted horizontal exhaust pipe, a rear-mounted vertical exhaust pipe, and a roof-top diffusion system. Exhaust dilution ratios were measured indoors during vehicle idle operation, using propane added to the exhaust gas as a tracer. Exhaust odor intensities were measured also indoors during vehicle idle operation by a human panel, using a threshold odor measurement technique. On the average, the dilution of the exhaust gas around the bus with the vertical exhaust pipe was about eight times greater than it was with the horizontal pipe. Odor intensity, as measured by the threshold response distance, was about 35% less with the vertical pipe than with the horizontal pipe. The roof-top diffuser was not as effective as the vertical exhaust pipe in increasing exhaust gas dilution or in reducing exhaust odor intensity.
Technical Paper

The Chrysler PowerFlite Transmission

1954-01-01
540261
THE design and construction of the PowerFlite automatic transmission are described by the authors. It is of the torque converter type, some models being water-cooled, while others are direct air cooled. Details of the hydraulic controls are explained, including the one-piece shift valve and the shuttle valve for controlling closed-throttle shifts. It is claimed that this transmission has relative simplicity, light weight, and smoothness of operation.
Technical Paper

The Car as a Peripheral, Adapting a Portable Computer to a Vehicle Intranet

1998-10-19
98C030
This paper discusses the feasibility and issues associated with integrating a consumer off-the shelf product into a vehicle. For this evaluation, we selected a handheld personal computer (HPC), cellular telephone and modem to integrate with the vehicle audio, climate and system controls. Connectivity between the HPC and the vehicle is established by the use of the standard infrared serial data link that comes with the HPC. Connectivity outside the vehicle uses a cellular telephone for voice and a cellular digital packet data (CDPD) modem for data. This system is built into the Dodge ESX-2 hybrid powered concept vehicle for demonstration.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

The 1978 Chrysler Torque Converter Lock-Up Clutch

1978-02-01
780100
A torque converter lock-up clutch was introduced by Chrysler Corporation in a majority of its passenger cars in the 1978 model year. The lock-up clutch improves fuel economy by eliminating torque converter slip in direct gear above a predetermined speed. The clutch and its controls were designed to fit within the confines of the existing transmission. The development of the clutch was primarily concerned with achieving adequate endurance life, good shift quality and isolation of torsional vibrations.
Technical Paper

Technical Highlights of the Dodge Compressed Natural Gas Ram Van/Wagon

1992-08-01
921551
An OEM Natural Gas Vehicle (NGV) has been developed to address recently enacted Clean-Fuel Vehicle legislation. The NGV incorporates advanced fuel storage and fuel metering technologies to produce very low emissions and to provide superior customer value compared to aftermarket conversion units.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Plasma Jet Ignition of Lean Mixtures

1975-02-01
750349
The development of a plasma jet ignition system is described on a 4-cyl, 140 in3 engine. Performance was evaluated on the basis of combustion flame photographs in a single-cylinder engine at 20/1 A/F dynamometer tests on a modified 4-cyl engine, and cold start emissions, fuel economy, and drivability in a vehicle at 19/1 air fuel ratio. In addition to adjustable engine variables such as air-fuel ratio and spark advance, system electrical and mechanical parameters were varied to improve combustion of lean mixtures. As examples, the air-fuel ratio range was 16-22/1, secondary ignition current was varied from 40 to 6000 mA, and plasma jet cavity and electrode geometry were optimized. It is shown that the plasma jet produces on ignition source which penetrates the mixture ahead of the initial flame front and reduces oxides of nitrogen emission, in comparison to a conventional production combustion chamber.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Permeation of Gasoline-Alcohol Fuel Blends Through High-Density Polyethylene Fuel Tanks with Different Barrier Technologies

1992-02-01
920164
The automobile industry has been using high-density polyethylene (HDPE) as a material to fabricate fuel tanks. Because untreated HDPE is permeable to the primary constituents of gasoline, these fuel tanks are now being produced with various barrier technologies that significantly reduce this permeation rate. Four currently available barrier technologies are fluorination, sulfonation, coextrusion, and the laminar barrier technology. These technologies have successfully proven to decrease the permeation rate of pure gasoline. However, it is suspected that their effectiveness may be reduced when alcohols are introduced into the fuel blend. In this work, we determine the permeation rates of gasoline-alcohol fuel blends through HDPE by conducting tests on 22-gallon HDPE fuel tanks and on small HDPE bottles fabricated with and without these barrier technologies. The goal of this study is to provide a comprehensive evaluation of these four barrier technologies.
Technical Paper

POWERMATIC A New Automatic for Chevrolet Transmission Heavy-Duty Trucks

1957-01-01
570012
THIS paper describes the development of a truck automatic transmission, from a statement of broad objectives through the growing pains, to road testing of the final product. Emphasis is placed upon original thinking that led to the decision to undertake such a project, compromises that suggested themselves throughout the various stages, and features tried and found wanting as well as those retained. The finished product is described full though not in detail, stress being placed upon interesting and novel design features.
Technical Paper

New Concept Modular Manual Transmission Clutch and Flywheel Assembly

1992-09-01
922110
Most United States vehicle assembly plants produce significantly more automatic transmission equipped vehicles than manual transmission vehicles. Assembling these two vehicles on a common production line can create complexity problems. This paper describes the design and development of a pre-assembled manual transmission clutch and flywheel modular assembly which reduces most of these problems. This assembly is used on the 1993 model year mini-van with a 2.5L four cylinder engine. This modular clutch system utilizes the same starter ring gear carrier (driveplate) used on automatic transmission equipped vehicles. It pilots into the crankshaft similar to the automatic transmission torque converter. It is balanced as an assembly which results in a lower system imbalance. A significant system piece cost saving, in comparison with today's competitive market, was achieved.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Methanol Concentration Smart Sensor

1993-03-01
930354
A Methanol Concentration Smart Sensor has been developed to support the demand for alternately fueled vehicles operating on blends of methanol and gasoline in any mixture up to 85% methanol. The sensor measures concentration by exploiting the difference in dielectric properties between methanol and gasoline. The measurement is made based on the distributed capacitance of a coil of wire, contained in a reservoir through which the fuel passes. This signal, along with temperature compensation inputs, is then fed to an integral microprocessor, which provides a voltage output proportional to the methanol concentration of the fuel. The Powertrain Controller uses this information to modify injector pulse width and provide proper spark advance. This paper will explain the sensor's development methodology and function.
X