Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

e-Thermal: Automobile Air-Conditioning Module

2004-03-08
2004-01-1509
e-Thermal is a vehicle level thermal analysis tool developed by General Motors to simulate the transient performance of the entire vehicle HVAC and Powertrain cooling system. It is currently in widespread (global) use across GM. This paper discusses the details of the air-conditioning module of e-Thermal. Most of the literature available on transient modeling of the air conditioning systems is based on finite difference approach that require large simulation times. This has been overcome by appropriately modeling the components using Sinda/Fluint. The basic components of automotive air conditioning system, evaporator, condenser, compressor and expansion valve, are parametrically modeled in Sinda/Fluint. For each component, physical characteristics and performance data is collected in form of component data standards. This performance data is used to curve fit parameters that then reproduce the component performance.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Vibration Modeling and Correlation of Driveline Boom for TFWD/AWD Crossover Vehicles

2003-05-05
2003-01-1495
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline boom test for the transverse engine with all wheel drive configuration on a front-wheel drive base (TFWD/AWD). Driveline boom caused by engine firing frequency that excites the bending mode of the propeller shaft becomes a noise and vibration issue for the design of TFWD/AWD driveline. The major source of vibrations and noise under the investigation in this paper is the dominant 3rd order engine torque pulse disturbance that excites the bending of the propeller shaft, the bending of the powertrain and possible the bending of the rear halfshaft. All other excitation sources in this powertrain for a 60° V6 engine with a pushrod type valvetrain are assessed and NVH issues are also considered in this transient dynamic model.
Technical Paper

Vehicle Panel Vibro-Acoustic Behavior and Damping

2003-05-05
2003-01-1406
Damping treatments are widely used in passenger vehicles, but the knowledge of damping treatments is often fragmentary in the industry. In this study, vibro-acoustics behavior of a set of vehicle floor and dash panels with various types of damping treatments was investigated. Sound transmission loss, sound radiation efficiency as well as damping loss factor were measured. The damping treatments ranged from laminated steel construction (thin viscoelastic layer) and doubler plate construction (thick viscoelastic layer) to less structural “bake-on” damping and self-adhesive aluminum foil-backed damping treatments. In addition, the bare vehicle panels were tested as a baseline and the fully carpeted floor panel was tested as a reference. The test data were then examined together with analytical modeling of some of the test configurations. As expected, the study found that damping treatments add more than damping. They also add mass and change body panel stiffness.
Technical Paper

Vehicle Dash Mat SEA Modeling and Correlation

2007-05-15
2007-01-2310
The dash mat is one of the most important acoustic components in the vehicle for both powertrain noise and road noise attenuation. To optimize acoustic performance and mass requirements in the advanced development stage, analytical modeling is essential. The development of a detailed Statistical Energy Analysis (SEA) model of a dash mat is discussed in this paper. Modeling techniques and correlation with test are presented for two different production dash mat designs, a barrier-decoupler conventional system and a dual layer dissipative system without a mass barrier. The material properties and thickness distribution are used in the SEA model together with the geometry information of the dash panel. With the SEA model suitably correlated, trade-off studies are conducted to investigate the relationship between mass reduction of the barrier and change in decoupler thickness. The effects of air gaps are also considered in both modeling and testing.
Technical Paper

Vehicle Brake Performance Assessment Using Subsystem Testing and Modeling

2005-04-11
2005-01-0791
In recent years, the automotive industry has seen a rapid decrease in product development cycle time and a simultaneous increase in the variety of vehicles offered in the marketplace. These trends require a rigorous yet efficient systems engineering approach to the development of automotive braking systems. This paper provides an overview of an objective process for developing and predicting vehicle-level brake performance through an approach using both laboratory subsystem testing and math modeling.
Technical Paper

Using a Co-simulation Framework to Enable Software-in-the-Loop Powertrain System Development

2009-04-20
2009-01-0520
The Advanced Engineering (AE) group within General Motors Powertrain (GMPT) develops next generation engines and transmissions for automotive and marine products. As a research organization, AE needs to prototype design ideas quickly and inexpensively. To this end, AE has embraced model-based development techniques and is currently investigating the benefits of software in-the-loop (SIL) testing. The underlying obstacle faced in developing a practical SIL system lays in the ability to integrate a plant model with sufficient fidelity together with target application software. ChiasTek worked with AE utilizing their CosiMate tool chain to eliminate these barriers and delivered a flexible SIL system simulation solution.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Supercharged Northstar DOHC 4.4L V8 Engine for Cadillac

2005-04-11
2005-01-1854
A new high output supercharged Northstar DOHC 4.4L V8 engine has been developed for new “V” series Cadillac performance models. The new engine combines the highest power rating of any production Cadillac engine to date with operating refinement uncommon at this power level. The new engine incorporates a high capacity airflow system including a unique GM Powertrain (GMPT) patented supercharger. The design integrates the intake manifold and supercharger (SC) into a supercharger module (SCM) supplied with throttle body (TB) and intercoolers (IC). The new engine architecture is based on the naturally aspirated (NA) rear wheel drive (RWD) engine released in 2004, but has been specifically designed and upgraded from the NA version for the greater structural and thermal loads that result from supercharging.
Technical Paper

The Steering Characterizing Functions (SCFs) and Their Use in Steering System Specification, Simulation, and Synthesis

2001-03-05
2001-01-1353
A set of functions for characterizing the mechanical properties of a steering “short gear” is described. They cover the kinematic, stiffness, assist, and friction performance of a power assisted (or manual) steering gear from the input shaft to the inner ends of the tie rods. Their use in describing the performance of a generalized steering gear is described. They have particular application to describing the steering feel performance of a vehicle. They can be used to specify the steering subsystem performance for desired steering feel for a given vehicle. They can also be used for experimental characterization of steering subsystems, can be used in vehicle dynamics simulations, and can be synthesized from a set of vehicle level performance targets. Along with their description, their use in simulation and methods to synthesize their values are described.
Technical Paper

The Next Generation Northstar DOHC 4.6L V8 Engine with Four-Cam Continuously Variable Valve Timing for Cadillac

2003-03-03
2003-01-0922
A new generation Northstar DOHC V8 engine has been developed for a new family of rear-wheel-drive (RWD) Cadillac vehicles. The new longitudinal engine architecture includes strategically selected technologies to enable a higher level of performance and refinement. These technologies include four-cam continuously variable valve timing, low restriction intake and exhaust manifolds and cylinder head ports, a steel crankshaft, electronic throttle control, and close-coupled catalysts. Additional design features beyond those required for RWD include optimized block ribbing, improved coolant flow, and a newly developed lubrication and ventilation system for high-speed operation and high lateral acceleration. This new design results in improved performance over the entire operating range, lower emissions, improved fuel economy, improved operating refinement, and reduced noise/vibration/harshness (NVH).
Technical Paper

The Importance of Sealing Pass-Through Locations Via the Front of Dash Barrier Assembly

1999-05-17
1999-01-1802
An improvement in a vehicle's front of dash barrier assembly's acoustical performance has in the past been addressed by both adding individual absorbers and increasing the overall weight of the dash sound barrier assembly. Depending upon the target market of the vehicle, adding mass may not be an option for improved acoustical performance. Understanding the value of an increase in vehicle mass and / or cost for a specific level of improved acoustical performance continues to plague both Original Equipment Manufacturer (OEM) Engineers and Purchasing representatives. This paper examines the importance of properly sealing the front of dash pass-through areas and offers recommendations which can improve the overall vehicle acoustical performance without the addition of cost and mass to the vehicle.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

The Effect of Rotor Crossdrilling on Brake Performance

2006-04-03
2006-01-0691
A review of available information on the effect that brake rotor crossdrilling has on brake performance reveals a wide range of claims on the subject, ranging from ‘minimal effect, cosmetic only’ to substantially improving brake cooling and fade resistance. There are also several theories on why brake rotor crossdrilling could improve fade performance, including crossdrill holes providing a path for ‘de-gassing’ of the brake lining material and increasing the mechanical interaction, or ‘grip’ of the lining material on the rotor. This paper reviews three case studies in which the opportunity arose to compare the performance of brake systems with crossdrilled versus non crossdrilled brake rotors in otherwise identical brake corner designs. The effect of brake rotor crossdrilling on brake cooling, brake output, brake fade, wet brake output, and brake wear rates were studied using both on-vehicle and dynamometer data.
Technical Paper

Testing Embedded Engine Controllers Using Programmable Test Techniques

2005-04-11
2005-01-0075
Control System testing determines whether the embedded controller (software and its HWIO / hardware system) are operating according to specification. General Motors Powertrain (GMPT) has increased its span of test coverage through the use of automated testing. Further use of this type of testing is advised to enhance quality in a field that is rapidly growing more complex.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Strategies for Managing Vehicle Mass throughout the Development Process and Vehicle Lifecycle

2007-04-16
2007-01-1721
Managing (minimizing and optimizing) the total mass of a vehicle is recognized as a critical task during the development of a new vehicle, as well as throughout its production lifecycle. This paper summarizes a literature review of, and investigation into, the strategies, methods and best practices for achieving low total mass in new vehicle programs, and/or mass reductions in existing production vehicle programs. Empirical and quantitative data and examples from the automotive manufacturers and suppliers are also provided in support of the material presented.
Technical Paper

Static Load Sharing Characteristics of Transmission Planetary Gear Sets: Model and Experiment

1999-03-01
1999-01-1050
One of the most common applications of planetary (epi-cyclic) gear sets is found in automotive transmissions. A planetary gear set typically total torque applied to be shared by multiple planets making a higher power density possible. This advantage of the planetary gear sets relies heavily on the assumption that each pinion carries an equal share of the total torque applied. However, in production, gear manufacturing and assembly variations along with certain design parameters may prevent equal load sharing among the planets. Here, a generalized mathematical model of a single-stage planetary gear set having n planets is developed to predict load shared by each planet under quasi-static conditions. The model takes into account effects of two most common errors including pinion carrier errors and gear run-out errors. Results of an experimental test program are used to validate the predictions of the model. Generalized guidelines for equal load sharing are also presented.
Technical Paper

Standard Interfaces and Standard Software Architecture as a Means For “Go Fast” Engineering

2004-10-18
2004-21-0030
The global market pressure of requiring high quality vehicles at lower prices has forced automotive manufacturers to change the way they engineer their products. In the electrical/electronic part of the automobile business, a strategy of reusing common hardware and software components was needed to support these market pressures. The General Motors strategy was to develop a standard electrical architecture. This paper will identify what a standard electrical architecture is, how a standard electrical architecture helps General Motors meet market demands, and issues that General Motors encountered in trying to implement this standard electrical architecture.
X