Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

e-Thermal: Automobile Air-Conditioning Module

2004-03-08
2004-01-1509
e-Thermal is a vehicle level thermal analysis tool developed by General Motors to simulate the transient performance of the entire vehicle HVAC and Powertrain cooling system. It is currently in widespread (global) use across GM. This paper discusses the details of the air-conditioning module of e-Thermal. Most of the literature available on transient modeling of the air conditioning systems is based on finite difference approach that require large simulation times. This has been overcome by appropriately modeling the components using Sinda/Fluint. The basic components of automotive air conditioning system, evaporator, condenser, compressor and expansion valve, are parametrically modeled in Sinda/Fluint. For each component, physical characteristics and performance data is collected in form of component data standards. This performance data is used to curve fit parameters that then reproduce the component performance.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Wear Test Method for Developing Plastic Materials for Applications Wherein a Plastic Part is Rotating or Reciprocating Against a Metal Surface

2005-04-11
2005-01-0876
The wear test introduced in this paper can be used to determine and rank PV (pressure time velocity) capability of plastic materials for applications where a plastic part is rotating or reciprocating against a metal surface. It provides an accelerated test method to evaluate the wear performance of plastic materials. A single test can provide tribological information at multiple PV conditions. The tribological information obtained from this method includes coefficient of friction, PV (pressure times velocity) limits, and interface temperature profile. This test is currently used by General Motors Corporation to develop plastic materials for transmission thrust washer and dynamic seal applications. The test is running in two sequences (A & B), capable of a PV range from 50,000 psi-ft/min 500,000 psi-ft/min, under dry conditions. The PV steps in sequence A are combinations of high pressure and low velocity - for applications where high loads are expected, such as thrust washers.
Technical Paper

Vibration Modeling and Correlation of Driveline Boom for TFWD/AWD Crossover Vehicles

2003-05-05
2003-01-1495
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline boom test for the transverse engine with all wheel drive configuration on a front-wheel drive base (TFWD/AWD). Driveline boom caused by engine firing frequency that excites the bending mode of the propeller shaft becomes a noise and vibration issue for the design of TFWD/AWD driveline. The major source of vibrations and noise under the investigation in this paper is the dominant 3rd order engine torque pulse disturbance that excites the bending of the propeller shaft, the bending of the powertrain and possible the bending of the rear halfshaft. All other excitation sources in this powertrain for a 60° V6 engine with a pushrod type valvetrain are assessed and NVH issues are also considered in this transient dynamic model.
Technical Paper

Vehicle Panel Vibro-Acoustic Behavior and Damping

2003-05-05
2003-01-1406
Damping treatments are widely used in passenger vehicles, but the knowledge of damping treatments is often fragmentary in the industry. In this study, vibro-acoustics behavior of a set of vehicle floor and dash panels with various types of damping treatments was investigated. Sound transmission loss, sound radiation efficiency as well as damping loss factor were measured. The damping treatments ranged from laminated steel construction (thin viscoelastic layer) and doubler plate construction (thick viscoelastic layer) to less structural “bake-on” damping and self-adhesive aluminum foil-backed damping treatments. In addition, the bare vehicle panels were tested as a baseline and the fully carpeted floor panel was tested as a reference. The test data were then examined together with analytical modeling of some of the test configurations. As expected, the study found that damping treatments add more than damping. They also add mass and change body panel stiffness.
Technical Paper

Vehicle Dash Mat SEA Modeling and Correlation

2007-05-15
2007-01-2310
The dash mat is one of the most important acoustic components in the vehicle for both powertrain noise and road noise attenuation. To optimize acoustic performance and mass requirements in the advanced development stage, analytical modeling is essential. The development of a detailed Statistical Energy Analysis (SEA) model of a dash mat is discussed in this paper. Modeling techniques and correlation with test are presented for two different production dash mat designs, a barrier-decoupler conventional system and a dual layer dissipative system without a mass barrier. The material properties and thickness distribution are used in the SEA model together with the geometry information of the dash panel. With the SEA model suitably correlated, trade-off studies are conducted to investigate the relationship between mass reduction of the barrier and change in decoupler thickness. The effects of air gaps are also considered in both modeling and testing.
Technical Paper

Using a Co-simulation Framework to Enable Software-in-the-Loop Powertrain System Development

2009-04-20
2009-01-0520
The Advanced Engineering (AE) group within General Motors Powertrain (GMPT) develops next generation engines and transmissions for automotive and marine products. As a research organization, AE needs to prototype design ideas quickly and inexpensively. To this end, AE has embraced model-based development techniques and is currently investigating the benefits of software in-the-loop (SIL) testing. The underlying obstacle faced in developing a practical SIL system lays in the ability to integrate a plant model with sufficient fidelity together with target application software. ChiasTek worked with AE utilizing their CosiMate tool chain to eliminate these barriers and delivered a flexible SIL system simulation solution.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Supercharged Northstar DOHC 4.4L V8 Engine for Cadillac

2005-04-11
2005-01-1854
A new high output supercharged Northstar DOHC 4.4L V8 engine has been developed for new “V” series Cadillac performance models. The new engine combines the highest power rating of any production Cadillac engine to date with operating refinement uncommon at this power level. The new engine incorporates a high capacity airflow system including a unique GM Powertrain (GMPT) patented supercharger. The design integrates the intake manifold and supercharger (SC) into a supercharger module (SCM) supplied with throttle body (TB) and intercoolers (IC). The new engine architecture is based on the naturally aspirated (NA) rear wheel drive (RWD) engine released in 2004, but has been specifically designed and upgraded from the NA version for the greater structural and thermal loads that result from supercharging.
Technical Paper

The Next Generation Northstar DOHC 4.6L V8 Engine with Four-Cam Continuously Variable Valve Timing for Cadillac

2003-03-03
2003-01-0922
A new generation Northstar DOHC V8 engine has been developed for a new family of rear-wheel-drive (RWD) Cadillac vehicles. The new longitudinal engine architecture includes strategically selected technologies to enable a higher level of performance and refinement. These technologies include four-cam continuously variable valve timing, low restriction intake and exhaust manifolds and cylinder head ports, a steel crankshaft, electronic throttle control, and close-coupled catalysts. Additional design features beyond those required for RWD include optimized block ribbing, improved coolant flow, and a newly developed lubrication and ventilation system for high-speed operation and high lateral acceleration. This new design results in improved performance over the entire operating range, lower emissions, improved fuel economy, improved operating refinement, and reduced noise/vibration/harshness (NVH).
Technical Paper

The Effects of Friction on Bursting of Tubes in Corner Filling

2003-03-03
2003-01-0688
Corner filling is a benchmark experiment in tube hydroforming. It was designed to gain knowledge pertinent of this new fabrication process. The corner filling benchmark has been widely used in the automotive and steel industries. Common sense as well as physical tests suggests that friction is an important parameter that affects the deformation of the tube and the bursting of the tubes. However, numerical simulations have yet to verify this fact. In this paper, the stress/strain states in the tube were computed using a finite element model. The dependence of bursting on friction for corner filling was estimated by using the forming limit diagram and a tensile-based failure criterion.
Technical Paper

Testing Embedded Engine Controllers Using Programmable Test Techniques

2005-04-11
2005-01-0075
Control System testing determines whether the embedded controller (software and its HWIO / hardware system) are operating according to specification. General Motors Powertrain (GMPT) has increased its span of test coverage through the use of automated testing. Further use of this type of testing is advised to enhance quality in a field that is rapidly growing more complex.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Stretch-Bend Forming Limits of 1008 AK Steel

2003-03-03
2003-01-1157
A series of tests were performed to determine the influence of curvature on the forming limits of 1008 AK steel. Rectangular blanks cut from three thicknesses of the material from 0.69 mm to 1.04 mm were securely clamped at opposite edges and stretched over wedge shaped punches of different radii. A series of punches were used with radii that varied from 0.508 mm to 12.7 mm to produce bending effects that range from severe to mild. Measurements show that the neck forms on the convex surface when the strain on the concave side of the sheet reaches a value consistent with the forming limit in plane-strain for in-plane deformation.
Technical Paper

Strain-Rate Characterization of Automotive Steel and the Effect of Strain-Rate in Component Crush Analysis

1998-09-29
982392
The effects of strain-rate and element mesh size on the numerical simulation of an automotive component impacted by a mass dropped from an instrumented drop tower was investigated. For this study, an analysis of a simple steel rail hat-section impacted by a mass moving at an initial velocity of 28Mph was performed using the explicit finite element code Radioss. Three constitutive material models: Elasto-Plastic (without strain rate), Johnson-Cook, and Zerilli-Armstrong were used to characterize the material properties for mild and high strength steel. Results obtained from the numerical analyses were compared to the experimental data for the maximum crush, final deformation shape, average crush force and the force-deflection curve. The results from this study indicate that the mechanical response of steel can be captured utilizing a constitutive material model which accounts for strain rate effect coupled with an average mesh size of 6 to 9mm.
Technical Paper

Static Load Sharing Characteristics of Transmission Planetary Gear Sets: Model and Experiment

1999-03-01
1999-01-1050
One of the most common applications of planetary (epi-cyclic) gear sets is found in automotive transmissions. A planetary gear set typically total torque applied to be shared by multiple planets making a higher power density possible. This advantage of the planetary gear sets relies heavily on the assumption that each pinion carries an equal share of the total torque applied. However, in production, gear manufacturing and assembly variations along with certain design parameters may prevent equal load sharing among the planets. Here, a generalized mathematical model of a single-stage planetary gear set having n planets is developed to predict load shared by each planet under quasi-static conditions. The model takes into account effects of two most common errors including pinion carrier errors and gear run-out errors. Results of an experimental test program are used to validate the predictions of the model. Generalized guidelines for equal load sharing are also presented.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
X