Refine Your Search

Topic

Author

Search Results

Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Virtual Manufacturing of Automotive Body Side Outers Using Advanced Line Die Forming Simulation

2007-04-16
2007-01-1688
As a virtual manufacturing press line, line die forming simulation provides a full range math-based engineering tool for stamping die developments of automotive structure and closure panels. Much beyond draw-die-only formability analysis that has been widely used in stamping simulation community during the last decade, the line die formability analysis allows incorporating more manufacturing requirements and resolving more potential failures before die construction and press tryout. Representing the most difficult level in formability analysis, conducting line die formability analysis of automotive body side outers exemplifies the greatest technological challenge to stamping CAE community. This paper discusses some critical issues in line die analysis of the body side outers, describes technical challenges in applications, and finally demonstrates the impact of line die forming simulation on the die development.
Technical Paper

Vehicle Brake Performance Assessment Using Subsystem Testing and Modeling

2005-04-11
2005-01-0791
In recent years, the automotive industry has seen a rapid decrease in product development cycle time and a simultaneous increase in the variety of vehicles offered in the marketplace. These trends require a rigorous yet efficient systems engineering approach to the development of automotive braking systems. This paper provides an overview of an objective process for developing and predicting vehicle-level brake performance through an approach using both laboratory subsystem testing and math modeling.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
Technical Paper

Tuning Guide for Deflected-Disc Suspension Dampers

2006-04-03
2006-01-1380
This paper presents an empirical-based model which explains the force-deflection characteristics of disc stacks commonly used in automotive suspension dampers. The model provides tools for comparing different disc stacks to understand their effect on damper performance. Load-deflection data is presented on a variety of discs and combinations of discs. The data is analyzed to show how the diameter, thickness and relative position of discs in a stack can affect the stack stiffness throughout the range of disc deflections. A model is developed to show how changes in the disc stack will affect damper performance at different velocities. An example is provided that shows predicted changes in disc stack force-deflection characteristics and the resulting changes in a damper force-velocity curve. Ride results are also presented that confirm the validity of the model.
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Music Analogy: An Alternative Strategy for Sound Quality Requirements

2005-05-16
2005-01-2477
In recent years a predominant strategy for setting sound quality (SQ) requirements has been the sensory correlation approach (also called sensory evaluation or sensory science). Some users of this approach have reported their progress in numerous papers. Other SQ practitioners have made presentations on specific topics that show the linkage to music and musical notation. These specific links point to an alternative general strategy - “the Music Analogy for Sound Quality.” This paper begins by comparing the general methods of the music analogy and sensory correlation. Some major differences will be identified and implications discussed. Some existing specific tools for the music analogy will be identified as well as some gaps that need to be filled. Finally, reasons will be presented concerning why the music analogy should be considered when developing sound quality requirements.
Technical Paper

Mount Rate Robust Optimization for Idle Shake Performance

2004-03-08
2004-01-1536
Analytical study of vehicle idle shake performance is standard NVH work within the vehicle development process. Robust design for idle shake performance takes variations into account besides nominal design based performance evaluation. In other words, in addition to the nominal design, Robust Design includes additional evaluations that may incorporate variation due to manufacturing, usage or the environment. This paper presents an example of how to obtain a robust design through performing Robust Optimization on idle shake performance with respect to powertrain mount rates and their tolerance variation. The paper describes a two-phase process that has been systematically implemented to analytically obtain a robust design. In the first phase, performance variation assessment is conducted. Then a Robust Optimization is performed to obtain a robust design.
Technical Paper

Model-Driven Product Line Software Development Process

2005-04-11
2005-01-1288
The past 10 years have created such buzzwords as “model-based development” and “auto-code generation”. Conveniently absent from the tool literature on model-based development are the equally, or more important concepts of Software Architecture and Process. When developing product line software, the process and architecture form a critical foundation to base reusable products and components. The development process can no longer be viewed as “model-based”, but rather as “model-driven”, due to the reliance on the models as the source artifact as opposed to the creators of the source artifacts. A model-driven product line software development process allows capturing of behavior, for commonality across different products, and having a different implementation for a specific product release.
Technical Paper

Intake Manifold Whistle Suppression in a Product Development Environment

2004-03-08
2004-01-0395
An intake manifold produced a distinct whistle noise in a vehicle while driving through high torque conditions. The diagnostic tests in a steady air flow test bench helped reveal that the whistle was occurring due to the shear layer instabilities in the air flow over the sump cavity in the intake manifold which acts as an Helmoltz-like resonator. Joint time-frequency domain signal analysis was applied to detect the peak whistle. A sharp radius and a ramp at the upstream edge of the sump cavity reduced the peak whistle sound pressure level from 106dB to 85dB in the air flow bench and made the whistle inaudible in the vehicle. Tolerance study was performed on this geometry to allow manufacturing variations. A test method, using rapid prototype parts, has been developed in order to identify whistles early in the design cycle.
Technical Paper

High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications

2006-04-03
2006-01-0605
Durability requirements for exhaust materials have resulted in the increased use of stainless steels throughout the exhaust system. The conversion of carbon steel exhaust flanges to stainless steel has occurred on many vehicles. Ferritic stainless steels are commonly used for exhaust flanges. Flange construction methods include stamped sheet steel, thick plate flanges and powder metal designs. Flange material selection criteria may include strength, oxidation resistance, weldability and cold temperature impact resistance. Flange geometry considerations include desired stiffness criteria, flange rotation, gasket/sealing technique and vehicle packaging. Both the material selection and flange geometry are considered in terms of meeting the desired durability and cost. The cyclic oxidation performance of the material is a key consideration when selecting flange materials.
Technical Paper

From Algorithms to Software - A Practical Approach to Model-Driven Design

2007-04-16
2007-01-1622
The value of model-based design has been attempted to be communicated for more than a decade. As methods and tools have appeared and disappeared from a series of different vendors it has become apparent that no single vendor has a solution that meets all users’ needs. Recently standards (UML, MDA, MOF, EMF, etc.) have become a dominant force and an alternative to vendor-specific languages and processes. Where these standards have succeeded and vendors have failed is in the realization that they do not provide the answer, but instead provide the foundation to develop the answer. It is in the utilization of these standards and their capability to be customized that companies have achieved success. Customization has occurred to fit organizations, processes, and architectures that leverage the value of model-driven design.
Technical Paper

Expanding the Application of Magnesium Components in the Automotive Industry: A Strategic Vision

2007-04-16
2007-01-1033
There is an increasing global realization about the need for fuel efficient vehicles. An inexpensive way to accomplish this is through mass reduction, and one of the most effective ways that this can occur is through substituting current materials with magnesium, the lightest structural metal. This document describes the results of a U.S. Automotive Materials Partnership (USAMP) sponsored study [1] that examines why magnesium use has only grown 10% per year and identifies how to promote more widespread commercial applications beyond the 5-6 kg of component currently in vehicles. The issues and concerns which have limited magnesium use are discussed via a series of research and development themes. These address concerns associated with corrosion, fastening, and minimal metalworking/non-traditional casting processing. The automotive and magnesium supplier industries have only a limited ability to develop implementation-ready magnesium components.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2005-04-11
2005-01-0542
A co-operative program initiated by the Automotive Aluminum Alliance and supported by USAMP continues to pursue the goal of establishing an in-laboratory cosmetic corrosion test for finished aluminum auto body panels that provides a good correlation with in-service performance. The program is organized as a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee. Initially a large reservoir of test materials was established to provide a well-defined and consistent specimen supply for comparing test results. A series of laboratory procedures have been conducted on triplicate samples at separate labs in order to evaluate the reproducibility of the various lab tests. Exposures at OEM test tracks have also been conducted and results of the proving ground tests have been compared to the results in the laboratory tests. Outdoor tests and on-vehicle tests are also in progress. An optical imaging technique is being utilized for evaluation of the corrosion.
Technical Paper

Development of an Improved Cosmetic Corrosion Test By the Automotive and Aluminum Industries for Finished Aluminum Autobody Panels

2003-03-03
2003-01-1235
The Automotive Aluminum Alliance in conjunction with SAE ACAP founded a corrosion task group in 2000 with a goal to establish an in-laboratory cosmetic corrosion test for finished aluminum auto body panels, which provides a good correlation with in-service performance. Development of this test involves a number of key steps that include: (1) Establishing a reservoir of standard test materials to provide a well-defined and consistent frame of reference for comparing test results; (2) Defining a real-world performance for the reference materials through on-vehicle tests conducted in the U.S. and Canada; (3) Evaluating existing laboratory, proving ground, and outdoor tests; (4) Conducting statistically designed experiments to evaluate the effects of cyclic-test variables; (5) Comparing corrosion mechanisms of laboratory and on-vehicle tests; and (6) Conducting a round robin test program to determine the precision of the new test. Several of these key steps have been accomplished.
Technical Paper

Cylinder Pressure Data Quality Checks and Procedures to Maximize Data Accuracy

2006-04-03
2006-01-1346
Cylinder pressure data is so completely integral to the combustion system development process that ensuring measurements of the highest possible accuracy is of paramount importance. Three main areas of the pressure measurement and analysis process control the accuracy of measured cylinder pressure and its derived metrics: 1) Association of the pressure data to the engine's crankshaft position or cylinder volume 2) Pegging, or referencing, the pressure sensor output to a known, absolute pressure level 3) The raw, relative pressure output of the piezoelectric cylinder pressure sensor Certain cylinder pressure-based metrics, such as mean effective pressures (MEP) and heat release parameters, require knowledge of the cylinder volume associated with the sampled pressure data. Accurate determination of the cylinder volume is dependent on knowing the rotational position of the crankshaft.
Technical Paper

Custom Real-Time Interface Blockset Development in Matlab/Simulink for On-Target Rapid Prototyping

2006-04-03
2006-01-0169
In GM R&D Powertrain/Engine Control Group, rapid prototyping controller (RPC) systems with Matlab/Simulink are used extensively to design, simulate and implement advanced engine control algorithms and models. However, those RPC systems use powerful microprocessors with large amounts of RAM contrary to engine control modules (ECM) in production vehicles. Therefore, a thorough analysis on the comparatively much more complicated algorithms and models cannot be performed during the research stage, since there are not enough tools to enable the smooth transition from Matlab/Simulink to the production type processor. The Real-Time Interface (RTI) Blockset for a production like microprocessor would close the transition gap between rapid prototyping controller systems and production type microprocessors by leveraging the power and popularity of Matlab/Simulink in control engineering world and automatic code generation tools.
Technical Paper

Corrosion Testing of 42-Volt Electrical Components

2003-03-03
2003-01-0308
As automobile power needs increase 42-volt electrical systems are being proposed for use in consumer vehicles. One concern when using these new systems is the corrosion resistance of these components, especially in underhood environments. Corrosion is an electrochemical phenomenon and as such can be altered (increased or decreased) by the application of an external current or voltage. Although unintentional, the use of a higher voltage electrical system has the ability to increase corrosion through its normal use. This program evaluated the impact of corrosion on electrical components powered by 14 and 42-volt DC systems. Accelerated corrosion test findings suggested that 42-volt systems may be more susceptible to corrosion, but without proper environmental shielding both supply system can have unacceptable degradation.
X