Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear Test Method for Developing Plastic Materials for Applications Wherein a Plastic Part is Rotating or Reciprocating Against a Metal Surface

2005-04-11
2005-01-0876
The wear test introduced in this paper can be used to determine and rank PV (pressure time velocity) capability of plastic materials for applications where a plastic part is rotating or reciprocating against a metal surface. It provides an accelerated test method to evaluate the wear performance of plastic materials. A single test can provide tribological information at multiple PV conditions. The tribological information obtained from this method includes coefficient of friction, PV (pressure times velocity) limits, and interface temperature profile. This test is currently used by General Motors Corporation to develop plastic materials for transmission thrust washer and dynamic seal applications. The test is running in two sequences (A & B), capable of a PV range from 50,000 psi-ft/min 500,000 psi-ft/min, under dry conditions. The PV steps in sequence A are combinations of high pressure and low velocity - for applications where high loads are expected, such as thrust washers.
Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Next Generation Northstar DOHC 4.6L V8 Engine with Four-Cam Continuously Variable Valve Timing for Cadillac

2003-03-03
2003-01-0922
A new generation Northstar DOHC V8 engine has been developed for a new family of rear-wheel-drive (RWD) Cadillac vehicles. The new longitudinal engine architecture includes strategically selected technologies to enable a higher level of performance and refinement. These technologies include four-cam continuously variable valve timing, low restriction intake and exhaust manifolds and cylinder head ports, a steel crankshaft, electronic throttle control, and close-coupled catalysts. Additional design features beyond those required for RWD include optimized block ribbing, improved coolant flow, and a newly developed lubrication and ventilation system for high-speed operation and high lateral acceleration. This new design results in improved performance over the entire operating range, lower emissions, improved fuel economy, improved operating refinement, and reduced noise/vibration/harshness (NVH).
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Tank-to-Wheels Preliminary Assessment of Advanced Powertrain and Alternative Fuel Vehicles for China

2007-04-16
2007-01-1609
Well-to-Wheels analyses are important tools that provide a rigorous examination and quantify the environmental burdens associated with fuel production and fuel consumption during the vehicle use phase. Such assessments integrate the results obtained from the Well-to-Tank (WtT) and the Tank-to-Wheels (TtW) analysis components. The purpose of this study is to provide a preliminary Tank-to-Wheels assessment of the benefits associated with the introduction of alternative powertrains and fuels in the Chinese market by the year 2015 as compared to the results obtained with conventional internal combustion engine vehicles (ICEVs). An emphasis is given on the vehicles powered by those fuels that have the potential to play a major role in the Chinese auto-sector, such as: M10, M85, E10, E85, Di-methyl Ether (DME) and Coal-to-Liquids (CTL). An important conclusion of this report is that hybridization reduces fuel consumption in all propulsion systems.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Supplementation of Measured Vehicle Road Loads to Study Vehicle Configuration Changes

2005-04-11
2005-01-1403
Measured vehicle loads, taken during durability events, are commonly used to drive in-lab vehicle subsystem validation testing. The use of measured loads can be problematic due to (a) off-nominal characteristics of the test vehicle, (b) post-test changes to vehicle tuning - bushings, springs, and shocks for example, (c) scheduling, timing and weather requirements, (d) modification of vehicle characteristics by the inclusion of transducers and (e) the cost of executing tests. A general process for supplementing and rationalizing measured vehicle data through the use of correlated multi-body dynamic simulations is presented. Difficulties in modeling tires and other components, as well as difficulties in model correlation for abusive load events are also discussed.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

Rationale for Technology Selections in GM's PNGV Precept Concept Car Based on Systems Analysis

2000-04-02
2000-01-1567
The CY2000 cornerstone goal of the Partnership for a New Generation of Vehicles (PNGV) is the demonstration in CY 2000 of a 5-passenger vehicle with fuel economy of up 80 mpg (3 l/100km). As a PNGV partner, GM will demonstrate a technology-demonstration concept vehicle, the Precept, having a lightweight aluminum-intensive body, hybrid-electric propulsion system and a portfolio of efficient vehicle technologies. This paper describes: 1) the strategy for the vehicle design including mass requirements, 2) the selection of dual axle application of regenerative braking and electric traction, and 3) the complementary perspective on energy management strategy. This paper outlines information developed through systems analysis that drove technology selections. The systems analyses relied on vehicle simulation models to estimate fuel economy associated with technology selections. Modeling analyses included consideration of both federal test requirements and more severe driving situations.
Technical Paper

R-152a Refrigeration System for Mobile Air Conditioning

2003-03-03
2003-01-0731
In recent years, climate protection has become as important as ozone layer protection was in the late 1980's and early 1990s. Concerns about global warming and climate change have culminated in the Kyoto Protocol, a treaty requiring its signatories to limit their total emission of greenhouse gases to pre-1990 levels by 2008. The inclusion of hydrofluorocarbons (HFCs) as one of the controlled substances in the Kyoto Protocol has increased global scrutiny of the global warming impact of HFC-134a (called R-134a when used as a refrigerant), the current mobile air conditioning refrigerant. Industry's first response was to begin improving current R-134a systems to reduce leakage, reduce charge, and increase system energy efficiency, which in turn reduces tailpipe CO2 emissions. An additional option would be to replace the current R-134a with a refrigerant of lower global warming impact. This paper documents the use of another HFC, R-152a, in a mobile A/C system.
Technical Paper

Progress Toward a Magnesium-Intensive Engine: The USAMP Magnesium Powertrain Cast Components Project

2004-03-08
2004-01-0654
The US Automotive Materials Partnership (USAMP) and the US Department of Energy launched the Magnesium Powertrain Cast Components Project in 2001 to determine the feasibility and desirability of producing a magnesium-intensive engine; a V6 engine with a magnesium block, bedplate, oil pan, and front cover. In 2003 the Project reached mid-point and accomplished a successful Decision Gate Review for entry into the second half (Phase II) of the Project. Three tasks, comprising Phase I were completed: (1) evaluation of the most promising low-cost, creep-resistant magnesium alloys, (2) design of the engine components using the properties of the optimized alloys and creation of cost model to assess the cost/benefit of the magnesium-intensive engine, and (3) identification and prioritization of scientific research areas deemed by the project team to be critical for the use of magnesium in powertrain applications.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

Plating on Plastics - Exterior Trim Part Properties

2008-04-14
2008-01-1460
Chrome plated automotive exterior parts continue to be popular. A good understanding of the properties of the unplated and plated parts is required to have the lowest cost successful design. In this work, traditional mechanical properties are compared between plated and unplated ABS and ABS+PC grades of plastic. Additional findings are shared for the thermal growth properties that are important to the designer who is trying to minimize gaps to adjacent components and for the engineer who wants the plated parts to resist cracking or peeling. Finally, some bend testing results are reviewed to understand better the susceptibility of the chrome plated plastics to crack when bent. In total, these results will help the exterior trim part designers optimize for cost, fit and finish.
Technical Paper

Plane Stress Fracture Toughness Testing of Die Cast Magnesium Alloys

2002-03-04
2002-01-0077
Plane stress fracture behavior was measured for magnesium alloys AM60B, AM50A, and AZ91D produced by high-pressure die casting. Compact Tension (CT) specimens were obtained from plate samples with approximately 2-5 mm thickness. The compliance unloading technique was used to record crack extension for each specimen. The AM50A and AM60B specimens exhibited stable crack extension beyond ASTM E 1820 limits for Jmax (∼ 33 kJ m-2 and 22 kJ m-2, respectively) and Δamax (2.1 mm and 1.3 mm, respectively). The data were in good agreement with a power law fit for J vs. Δa. The AZ91D samples had unstable crack extension, with a flat R-curve and a critical fracture energy Jc of ∼ 7.5 kJ m-2. All fractures were by microvoid coalescence, initiated between the primary Mg grains and the brittle Mg17Al12 phase.
Technical Paper

PEM Fuel Cell System Solutions for Transportation

2000-03-06
2000-01-0373
PEM Fuel Cell technology has been advancing rapidly during the last several years as evidenced by various vehicle demonstrations by the major automotive companies. As the development continues to bring hardware to automotive system level solutions, many engineering challenges arise. This paper will deal with two (2) of these areas from an automotive system level perspective: Thermal Management and the Fuel Cell Stack. Both of these sub-system areas are critical to the success of the technology in meeting the requirements of tomorrow's automotive customer.
Technical Paper

Optimal Mount Selection with Scattered and Bundled Stiffness Rates

2006-04-03
2006-01-0736
The optimal selection of vehicle body and powertrain mounts from “mount libraries” is one of the major undertakings to achieve optimal vehicle dynamics and N&V performance through the reuse of existing mount designs. The great challenges of the process are due to the facts that conventional optimization procedures, either through simulation or DOE, can not be used directly because the stiffness rates of the mounts are scattered and bundled. Sorting out the best through hardware tests is generally unrealistic simply due to the huge number of mount combinations. This paper presents a new approach to the optimal mount selection, and demonstrates through applications that it is efficient and reliable. This approach characterizes a mount by its effective stiffness rate and evaluates its deviation from an associated target. Continuous dummy variables are used to determine the selection targets through conventional processes for performance optimization.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
X