Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Clutch Actuation System for Dry DCT

2015-04-14
2015-01-1118
Dry dual clutch transmission (DCT) has played an important role in the high performance applications as well as low-cost market sectors in Asia, with a potential as the future mainstream transmission technology due to its high mechanical efficiency and driving comfort. Control system simplification and cost reduction has been critical in making dry DCT more competitive against other transmission technologies. Specifically, DCT clutch actuation system is a key component with a great potential for cost-saving as well as performance improvement. In this paper, a new motor driven clutch actuator with a force-aid lever has been proposed. A spring is added to assist clutch apply that can effectively reduce the motor size and energy consumption. The goal of this paper is to investigate the feasibility of this new clutch actuator, and the force-aid lever actuator's principle, physical structure design, and validation results are discussed in details.
Technical Paper

A System Safety Perspective into Chevy Bolt’s One Pedal Driving

2019-04-02
2019-01-0133
The Chevy Bolt’s One Pedal Driving feature is a new electrification propulsion enhancement that allows the driver to accelerate, decelerate and hold their vehicle stationary by just using the accelerator pedal. With this new feature, the driver is relieved of having to switch between pressing the accelerator pedal and brake pedal to slow, stop and hold the vehicle stationary. While this feature provides a convenience to the driver, it also presents a paradigm shift in driver engagement and control system responsibility for executing certain functions that the driver was traditionally responsible to perform. Various system safety techniques were involved in the development of such a feature both from a traditional functional safety perspective as well as a Safety of the Intended Functionality (SOTIF) perspective.
Technical Paper

A System of Systems Approach to Automotive Challenges

2018-04-03
2018-01-0752
The automotive industry is facing many significant challenges that go far beyond the design and manufacturing of automobile products. Connected, autonomous and electric vehicles, smart cities, urbanization and the car sharing economy all present challenges in a fast-changing environment which the automotive industry must adapt to. Cars no longer are just standalone systems, but have become constituent systems (CS) in larger System of Systems (SoS) context. This is reflected in the emergence of several acronyms such as vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) expressions. System of Systems are defined systems of interest whose elements (constituent systems) are managerially and operationally independent systems. This interoperating and/or integrated collection of constituent systems usually produce results unachievable by the individual systems alone, for example the use of car batteries as virtual power plants.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

Aftertreatment Layouts Evaluation in the Context of Euro 7 Scenarios Proposed by CLOVE Abstract

2022-06-14
2022-37-0008
Euro 7/VII regulations are currently under discussion and are expected to be the last big regulatory step in Europe. From available documentation, it is clear the aim of further regulating the extended conditions of use which are still responsible of high emission events (e. g. cold start or altitude) as well as regulating secondary emissions such as NH3, N2O, CH4, Aldehydes (HCHO). Even if not completely fixed yet, the EU7 limits will be challenging for internal combustion engines and even more for Diesel. Despite a consistent reduction of market share, Diesel engines are expected to remain a significant portion in certain sectors such as Heavy duty (HD) and Light-commercial vehicle (LCV) for some decades. In order to reach the new limits being proposed, besides minimizing engine-out emissions, Diesel powertrain will need an aftertreatment system able to work at very high efficiency right after engine start and in almost every working and environmental condition.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Journal Article

Analysis and Validation of Current Ripple Induced PWM Switching Noise and Vibration for Electric Vehicles

2023-05-08
2023-01-1100
Pulse Width Modulation or PWM has been widely used in traction motor control for electric propulsion systems. The associated switching noise has become one of the major NVH concerns of electric vehicles (EVs). This paper presents a multi-disciplinary study to analyze and validate current ripple induced switching noise for EV applications. First, the root cause of the switching noise is identified as high frequency ripple components superimposed on the sinusoidal three-phase current waveforms, due to PWM switching. Measured phase currents correlate well with predictions based on an analytical method. Next, the realistic ripple currents are utilized to predict the electro-magnetic dynamic forces at both the motor pole pass orders and the switching frequency plus its harmonics. Special care is taken to ensure sufficient time step resolution to capture the ripple forces at varying motor speeds.
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2011-09-11
2011-24-0080
The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Technical Paper

Applications of Hardware-in-the-Loop Simulation in Automotive Embedded Systems

2020-04-14
2020-01-1289
Hardware-in-the-loop (HiL) simulation is an advanced technique for development and testing of complex real-time embedded systems. This technique has greatly developed in the last decades and has been more and more used in the automotive industry for algorithm and software development, hardware validation, safety validation, and fault investigation activities. Plant simulation model executes in HiL simulator to provide a virtual vehicle that interacts in an open-loop or closed-loop fashion with the embedded system that is under test. Compared to in-vehicle testing, HiL simulation provides benefits of low cost, high availability, high flexibility, repeatability, and test automation capability. HiL simulation reduces the risk caused by control failure, which is especially important for self-driving control system development and testing. The HiL simulation system is more application specific.
Technical Paper

Brake System Design for Dedicated BEV Architectures

2018-10-05
2018-01-1870
As fossil fuels dwindle and more electric vehicles enter the market, there is an opportunity to reevaluate the standard brake system. This paper will discuss and compare the differences in brake system sizing between a non-regenerative braking internal combustion engine vehicle and a dedicated battery electric vehicle with regenerative braking. It will use a model derived from component dynamometer testing and vehicle test data of a mid-size production vehicle. The model will be modified for the mass and regenerative braking capabilities of a battery electric vehicle. The contribution of regenerative braking energy will be analyzed and compared to show its impact on component sizing, thermal sizing, and lining life. The detailed design study will calculate the parameters for caliper, rotor design, actuation, etc., that are optimized for 100% regen enabled vehicles.
Technical Paper

Considerations for Verification of Vehicle Occupant Magnetic Field Protection

2021-04-06
2021-01-0155
Hybrid and electric vehicles utilize high power electric motors to propel the vehicle requiring a significant level of electric current to travel between various modules such as energy storage devices, power inverter modules, energy charging modules, and the motors themselves. This electric current creates magnetic fields around the devices themselves and wiring that delivers this current between devices within the vehicle. These devices and wiring exist throughout the vehicle and can even exist near vehicle occupants, which has prompted investigations looking into the short term biological effect these non-ionizing fields can have on the human body. The findings from these investigations have been published by organizations such as the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and some nations have passed laws regulating the magnetic and electric field exposure to vehicle occupants.
Technical Paper

Creating Driving Scenarios from Recorded Vehicle Data for Validating Lane Centering System in Highway Traffic

2020-04-14
2020-01-0718
The adoption of simulation is critical to reducing development time and enhancing system robustness for Advanced Driver Assistance Systems (ADAS). Automotive companies typically have an abundance of real data recorded from a vehicle which is suitable for open-loop simulations. However, recorded data is often not suitable to test closed-loop control systems since the recorded data cannot react to changes in vehicle movement. This paper introduces a methodology to create virtual driving scenarios from recorded vehicle data to enable closed-loop simulation. This methodology is applied to test a lane centering application. A lane centering application helps a driver control steering to stay in the current lane and control acceleration and braking to maintain a set speed or to follow a preceding vehicle. The driver’s vehicle is referred to as the ego vehicle. Other vehicles on the road are referred to as target vehicles.
Technical Paper

Cylindrical Li-Ion Cell Crush CAE Capability in Automotive Application

2023-04-11
2023-01-0509
The world is moving towards E-mobility solutions and Battery Electric Vehicles (BEVs) are the main enabler towards it. Li-ion cells are the fundamental building block of any BEVs. There are three common types of Li-ion cell design i.e., cylindrical cells, Prismatic Cells and Pouch cells. Ensuring safety of BEVs are critical to gain customer trust and acceptance over Internal Combustion Engine (ICE) vehicles. EV fire is found to be one of the major concerns related to using higher energy batteries. During a crash event, Post-Crash Electrical Integrity of the BEV is to be ensured and hence primary focus is on mitigation of Li-ion cell internal short circuit. It has been seen in prior published articles that cell internal short circuit can be triggered by physical intrusion of cell. This paper primarily focusses on simulating the mechanical behavior of cylindrical cell under various crush conditions.
Technical Paper

Design and Implementation of a Distributed Thermal Control System for Power Electronics Components in Hybrid Vehicles

2019-04-02
2019-01-0501
Hybrid electric vehicles and battery electric vehicles (BEV) use power electronics (PE) devices to convert between high voltage DC power of the battery and other formats of power. These PE components requires operation within certain temperature range, otherwise, overheating causes component as well as vehicle performance degradation. Therefore, a thermal management system is required for PE components. This paper focuses on the design and development of such a PE components thermal control system. The proposed control system is a distributed thermal control system in which all the PE components are placed in series within one cooling loop. The advantage of the proposed control system is its reduced system complexity, energy efficiency and flexibility to add future PE components. In addition, electric control unit (ECU) are utilized so that complex control algorithms can be implemented.
Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Determining the Greenhouse Gas Emissions Benefit of an Adaptive Cruise Control System Using Real-World Driving Data

2019-04-02
2019-01-0310
Adaptive cruise control is an advanced vehicle technology that is unique in its ability to govern vehicle behavior for extended periods of distance and time. As opposed to standard cruise control, adaptive cruise control can remain active through moderate to heavy traffic congestion, and can more effectively reduce greenhouse gas emissions. Its ability to reduce greenhouse gas emissions is derived primarily from two physical phenomena: platooning and controlled acceleration. Platooning refers to reductions in aerodynamic drag resulting from opportunistic following distances from the vehicle ahead, and controlled acceleration refers to the ability of adaptive cruise control to accelerate the vehicle in an energy efficient manner. This research calculates the measured greenhouse gas emissions benefit of adaptive cruise control on a fleet of 51 vehicles over 62 days and 199,300 miles.
Technical Paper

Development and Correlation of Co-Simulated Plant Models for Propulsion Systems

2020-04-14
2020-01-1416
Model-based system simulations play a critical role in the development process of the automotive industry. They are highly instrumental in developing embedded control systems during conception, design, validation, and deployment stages. Whether for model-in-the-loop (MiL), software-in-the-loop (SiL) or hardware-in-the-loop (HiL) scenarios, high-fidelity plant models are particularly valuable for generating realistic simulation results that can parallel or substitute for costly and time-consuming vehicle field tests. In this paper, the development of a powertrain plant model and its correlation performance are presented. The focus is on the following modules of the propulsion systems: transmission, driveline, and vehicle. The physics and modeling approach of the modules is discussed, and the implementation is illustrated in Amesim software. The developed model shows good correlation performance against test data in dynamic events such as launch, tip-in, tip-out, and gearshifts.
Technical Paper

Development of General Motors’ eAssist Gen3 Propulsion System

2018-04-03
2018-01-0422
General Motors’ 3rd generation eAssist propulsion systems build upon the experience gained from the 2nd generation 115v system and the 1st generation 36v system. Extensive architectural studies were conducted to optimize the new eAssist system to maintain the performance and fuel economy gains of the 2nd generation 115v system while preserving passenger and cargo space, and reducing cost. Three diverse vehicle applications have been brought to production. They include two similar pickup trucks with 5.3 liter V8 engines and 8 speed transmissions, a 4-door passenger car with 2.5 liter 4 cylinder normally aspirated gasoline engine and a 6-speed automatic transmission, and a crossover SUV with a 2.0-liter turbocharged engine and 9 speed transmission. The key electrification components are a new water cooled induction motor/generator (MG), new water cooled power electronics module, and two major variants of 86v lithium ion battery packs.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

Development of SI-Engine based Extended MVEMs for use in Estimators for Engine Health Management

2012-09-24
2012-01-1990
Mean Value Engine Models (MVEM) represent average behaviour of an engine over one or more thermodynamic cycles and have been designed for automotive control and diagnosis applications. However, most MVEMs are limited to the description of the dynamics of few engine sub-systems. The diagnostic capabilities of a vehicular engine health management (VEHM) system that uses such MVEMs are limited. In this paper, the process of deriving an MVEM for an entire engine system from an instantaneous within-cycle crank-angle model (WCCM) is described. This is expected to be more beneficial for fault diagnosis in VEHMs since such MVEMs in the context of state observers, can be used to detect a broader range of faults and also generate a larger number of fault signatures for better fault detection and isolation (FDI). Extended Kalman Filter (EKF) based estimators are developed that use this MVEM for state estimation.
X