Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Torque Ripples in Electric Vehicle Drive Quality in Open and Closed Loop Control Environments

2021-04-06
2021-01-0981
Torque ripple of electric motors is a unique feature in Battery Electric Vehicles (BEV) affecting vehicle performance. It is one of the disturbances from electric motors resulting in unpleasant vehicle fore-aft vibrations at specific vehicle speeds. In this study, the torque ripple modeling and simulation procedure has been developed. Critical modeling contents in a full vehicle ADAMS model and a brief overview of the propulsion control are described. Analytical data sets for torque fluctuations (torque ripple) from a couple of different sources are incorporated in the model. The CAE simulation procedure was applied to simulate vehicle performances of a General Motors Battery Electric Vehicle in an early vehicle design phase. Torque ripple phenomena are simulated both in an open-loop and closed-loop propulsion control environment to see how much vehicle fore-aft vibration suppression is achieved by the motor control methods.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Technical Paper

Three Dimensional Electromagnetic and NVH Analyses of Electric Motor Eccentricity to Enhance NVH Robustness for Hybrid and Electric Vehicles

2020-04-14
2020-01-0412
Electric motor whine is one of the main noise sources of hybrid and electric vehicles. Motor air gap eccentricity due to propulsion system deflection, part tolerances and manufacturing variation is typically ignored in motor NVH design and analysis. Such eccentricity can be a dominant noise source by amplifying critical motor whine orders up to 10 dB, leading to poor NVH robustness. However, this problem cannot be explained by conventional method based on symmetric 2D approach. New 3D electromagnetic (EM) and NVH analyses are developed and validated to accurately predict air gap induced motor noise to enhance NVH robustness: First, a true 3D full 360-degree electric motor model is developed to model asymmetric air gap distribution along motor stack length. Predicted 3D EM forces are mapped to mechanical finite-element mesh over the cylindrical stator surface.
Technical Paper

Thermomechanical Fatigue Crack Growth Simulation in a Turbo-Housing Model Using Nonlinear Fracture Mechanics

2023-04-11
2023-01-0596
Turbocharger housings in internal combustion engines are subjected to severe mechanical and thermal cyclic loads throughout their life-time or during engine testing. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermo-mechanical fatigue (TMF) of the material. For the computational TMF life assessment of high temperature components, the DTMF model can provide reliable TMF life predictions. The model is based on a short fatigue crack growth law and uses local finite-element (FE) results to predict the number of cycles to failure for a technical crack. In engine applications, it is nowadays often acceptable to have short cracks as long as they do not propagate and cause loss of function of the component. Thus, it is necessary to predict not only potential crack locations and the corresponding number of cycles for a technical crack, but also to determine subsequent crack growth or even a possible crack arrest.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Sizing Next Generation High Performance Brake Systems with Copper Free Linings

2017-09-17
2017-01-2532
The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
Technical Paper

Simulation Methodology to Analyze Overall Induction Heat Treatment Process of a Crank Shaft to Determine Effects on Structural Performance

2020-04-14
2020-01-0506
Steel crankshafts are subjected to an induction heat treatment process for improving the operational life. Metallurgical phase transformations during the heat treatment process have direct influence on the hardness and residual stress. To predict the structural performance of a crankshaft using Computer Aided Engineering (CAE) early in the design phase, it is very important to simulate the complete induction heat treatment process. The objective of this study is to establish the overall analysis procedure, starting from capturing the eddy current generation in the crank shaft due to rotating inductor coils to the prediction of resultant hardness and the induced residual stress. In the proposed methodology, a sequentially coupled electromagnetic and thermal model is developed to capture the resultant temperature distribution due to the rotation of the inductor coil.
Technical Paper

Scavenge Ports Ooptimization of a 2-Stroke Opposed Piston Diesel Engine

2017-09-04
2017-24-0167
This work reports a CFD study on a 2-stroke (2-S) opposed piston high speed direct injection (HSDI) Diesel engine. The engine main features (bore, stroke, port timings, et cetera) are defined in a previous stage of the project, while the current analysis is focused on the assembly made up of scavenge ports, manifold and cylinder. The first step of the study consists in the construction of a parametric mesh on a simplified geometry. Two geometric parameters and three different operating conditions are considered. A CFD-3D simulation by using a customized version of the KIVA-4 code is performed on a set of 243 different cases, sweeping all the most interesting combinations of geometric parameters and operating conditions. The post-processing of this huge amount of data allow us to define the most effective geometric configuration, named baseline.
Journal Article

Rotor Optimization to Reduce Electric Motor Noise

2023-04-11
2023-01-0540
Electric motor is among the main sources of noise and vibration for electrified propulsion systems. This paper focuses on the electric motor rotor NVH optimization, which is identified as a key enabler to reduce the motor whine, and balances other performance such as motor torque and efficiency. First, conventional rotor NVH design technologies such as rotor skew and asymmetric rotor pole-to-pole design are discussed, along with their associated tradeoff including reduced motor torque and additional sideband orders. Next, a special notch feature is proposed on the rotor surface with one notch per pole at every q-axis. A DOE study leads to the optimal notch design which significantly reduces the dominant motor torque ripple order by up to 20 dB, with minimum impact to motor torque or loss. Further design studies are then performed to explore additional d-axis notches which are symmetrically located within the top layer magnet opening angles.
Journal Article

Rotational Vibration Test Apparatus for Laser Vibrometer Verification

2021-08-31
2021-01-1096
Prior to making rotational vibration measurements with a laser vibrometer, it is good practice to establish that the instrument is operating properly. This can be accomplished by comparative measurement of a rotational vibration source with known amplitude and frequency. This paper describes the design and development of a rotational vibration apparatus with known amplitude and frequency to be used as a reference for comparison to concurrent and co-located measurements made by a rotational laser vibrometer (RLV). The comparative measurements acquired with the apparatus are helpful to verify proper laser vibrometer operation in between regular calibration intervals, and/or whenever the functionality of the vibrometer is suspect. In the subject apparatus, a Cardan shaft with variable input speed and angle is used to provide output torsional vibration with variable frequency and amplitude.
Technical Paper

Purge Pump Rotor Dynamics Subjected to Ball Bearing Inner and Outer Race Wear Defects

2020-04-14
2020-01-0403
The purge pump is used to pull evaporative gases from canister and send to engine for combustion in Turbocharged engines. The purge pump with impeller at one end and electric motor at the other end is supported by the ball bearing assembly. A bearing kinematic model to predict forcing function due to defect in ball bearing arrangement, coupled with bearing dynamic model of rotor because of rotating component, is proposed in this paper to get accumulated effect on transmitted force to the purge pump housing. Rotor dynamic of purge pump rotor components only produces certain order forcing responses which can be simulated into the multibody software environment, knowing the ball bearing geometry parameters hence providing stiffness parameter for rotor system.
Technical Paper

Prediction of Combustion Phasing Using Deep Convolutional Neural Networks

2020-04-14
2020-01-0292
A Machine Learning (ML) approach is presented to correlate in-cylinder images of early flame kernel development within a spark-ignited (SI) gasoline engine to early-, mid-, and late-stage flame propagation. The objective of this study was to train machine learning models to analyze the relevance of flame surface features on subsequent burn rates. Ultimately, an approach of this nature can be generalized to flame images from a variety of sources. The prediction of combustion phasing was formulated as a regression problem to train predictive models to supplement observations of early flame kernel growth. High-speed images were captured from an optically accessible SI engine for 357 cycles under pre-mixed operation. A subset of these images was used to train three models: a linear regression model, a deep Convolutional Neural Network (CNN) based on the InceptionV3 architecture and a CNN built with assisted learning on the VGG19 architecture.
Technical Paper

Porosity Characterization of Cast Al Alloys with X-Ray Computed Tomography andScanning Electron Microscope

2021-04-06
2021-01-0306
Cast Al-Si alloys are widely used in automotive industry to produce structural components, such as engine block and cylinder head, because of the increasing demands in reducing mass for improved fuel efficiency. The fatigue performance of the castings is critical in their application. Porosity is highly detrimental to the fatigue behavior of cast Al-Si alloys. Therefore, accurate measurement of pore sizes is important in order to develop the correlations between porosity and fatigue strength. However, quantification of porosity is challenging and shows large variation depending on the measurement methods, particularly for micro-shrinkage porosity due to the torturous and complex morphology. The conventional metallographic image analysis method in the 2D polished surface often underestimates the actual pore size particularly when the porosity morphology is complex.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

New Integrated Electromagnetic and NVH Analyses for Induction Traction Motors for Hybrid and Electric Vehicle Applications

2020-04-14
2020-01-0413
Electric motor whine is one of the main noise sources of hybrid and electric vehicles. Compared with permanent magnetic motors, characterization and prediction of traction induction motor is particularly challenging due to high computational costs to calculate the electro-magnetic (EM) forces as noise source, as well as motor slip and harmonic orders change at different torque/speed operating conditions. Historically, induction motor NVH is designed qualitatively by optimizing motor topology including rotor bar, pole number and slot counts etc. A new integrated electromagnetic and NVH analysis method is developed and successfully validated at all dominant motor orders for an automotive traction motor, which enables quantitative prediction of induction motor N&V performance in early design stage: First, a new equivalent rotor current method is used that significantly reduces the computational time required to calculate the EM force over transient responses.
Technical Paper

NVH Design, Analysis and Optimization of Chevrolet Bolt Battery Electric Vehicle

2018-04-03
2018-01-0994
A multi-stage system level method is used to design, optimize and enhance electric motor NVH performance of General Motors’ Chevrolet Bolt battery electric vehicle (BEV). First, the rotor EM (electromagnetic) design optimizes magnet placement between adjacent poles asymmetrically, along with a pair of small slots stamped near the rotor outer surface to lower torque ripple and radial force. The size and placement of stator slot openings under each pole are optimized to lower torque ripple and radial force. Next, motor stator level FE (Finite Element) analysis and modal test correlation are performed to benchmark the orthotropic stator material properties and accurately predict modal results within 7% error below 2 kHz. Furthermore, tangential and radial EM forces are applied on motor-in-fixture subsystem FE model, which predicts surface vibration and pseudo sound power on the motor housing.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

Multidimensional CFD Studies of Oil Drawdown in an i-4 Engine

2022-03-29
2022-01-0397
A computational study based on unsteady Reynolds-Averaged-Navier-Stokes that resolves the gas-liquid interface was performed to examine the unsteady multiphase flow in a 4 cylinder Inline (i-4) engine. In this study, the rotating motion of the crankshaft and reciprocating motion of the pistons were accounted for to accurately predict the oil distribution in various parts of the engine. Three rotational speeds of the crankshaft have been examined: 1000, 2800, and 4000 rpm. Of particular interest is to examine the mechanisms governing the process of oil drawdown from the engine head into the case. The oil distributions in other parts of the engine have also been investigated to understand the overall crankcase breathing process. Results obtained show the drawdown of oil from the head into the case to be strongly dependent on the venting strategy for the foul air going out of the engine through the PCV system.
Technical Paper

Motor Level Torque Ripple Requirement Development for Vehicle Seat Track Acceleration

2023-04-11
2023-01-0565
Torque ripple from electric motor can excite a system resonance perceived as vibration at the vehicle seat track. The CAE simulation procedure was applied to analyze the seat track acceleration excited by electric motor torque ripple. In this study, the transfer function between the electric motor torque and vehicle level seat track acceleration was developed, and it incorporates the control capability and vehicle sensitivity subfunctions. The motor level torque ripple requirement was developed, which can support motor design in early vehicle development stage based on vehicle level criteria. The analysis results obtained for motor level torque ripple requirement shows good agreement with the experimental validation using vehicle test data. The variation study on control capability and vehicle sensitivity was investigated, and the results can help to identify the solution to improve vehicle torque ripple response.
X