Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Modeling the Effect of Elastic Modulus of the Second Phase Particle on Crack Propagation Using FECEM

2021-04-06
2021-01-0313
For the cases where perfect interface is not assumed and crack propagation path is unknown, the fully embedded zero-thickness cohesive element model (FECEM) is an alternative simulation method to model crack growth. In our newly developed FECEM model, the common element is triangle 3-node element under two-dimensional condition and the interface element is a quadrilateral cohesive element with zero thickness. From the simulation by FECEM, it is found that the elastic modulus of the second phase particle in a ductile matrix has a significant effect on crack propagation behavior. When the particle encounters the propagating crack, if it is softer than the matrix, the crack will be attracted towards the particle and then will puncture into it. If the particle is harder than the matrix, it will slow down the propagation of the crack.
X