Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Using Spherical Beamforming to Evaluate Wind Noise Paths

2014-11-04
2014-36-0791
Microphone array based techniques have a growing range of applications in the vehicle development process. This paper evaluates the use of Spherical Beamforming (SB) to investigate the transmission of wind-generated noise into the passenger cabin, as one of the alternative ways to perform in-vehicle troubleshooting and design optimization. On track measurements at dominant wind noise conditions are taken with the spherical microphone array positioned at the front passenger head location. Experimental diligence and careful processing necessary to enable concise conclusions are briefly described. The application of Spherical Harmonics Angularly Resolved Pressure (SHARP) and the Filter-And-Sum (FAS) algorithms is compared. Data analysis variables, run-to-run repeatability and system capability to identify design modifications are studied.
Technical Paper

Use of Seat Cushion Accelerometer as a Tool to Support Vehicle Dynamics Ride Development by the Objective Characterization of Vehicle Ride

2014-09-30
2014-36-0220
The definition of the ride attribute is very difficult because it is part of human perception during driving. For vehicle dynamics work, have details of what is good or what is bad considering driving comfort, usually, induces some controversial opinions. In this work, the use of a single accelerometer is shown as a tool to characterize the basic vehicle vibrational behavior and so support the correlation between human perception and the resulting ride comfort presented. By using PSD theory, it is possible to “see” how the vehicle vibrates and so have a better understanding of where in the vehicle is located a possible issue and how to fix it. In a more advanced point of view is possible to characterize each vehicle with a ride “personality”, this meaning how each brand and model behave and so how vehicle behave to the consumer approve or complain about it..
Technical Paper

Technical Assessment of an Automotive System through the Methodology of Engineering Value / Analysis Value

2016-10-25
2016-36-0327
In the current automotive industry, in an increasingly challenging environment due to strong competition, to develop a product that performs its functions objectively, with quality and mainly with the lowest possible cost, these are the keys to conquer competitive advantage. This paper is intended to explore cost reduction of an automotive system by using the techniques of the methodology EV / AV (Engineering Value / Analysis Value). The analysis are framed as exploratory, in the form of study, with ratings of the components and their functions, followed by the generation of ideas with the completion of an indication of a great potential for a product development with optimized cost.
Technical Paper

Methodology for virtual analysis of dynamic behavior for tubes and flexible hoses associated with suspension kinematics

2024-01-08
2023-36-0009
Nowadays the automotive market is reducing product development time and launching more technological vehicles, always focusing on having even more safety with better customer experience which generates big competitiveness and requires more accurate and faster development, the virtual simulations make it possible to meet this new reality with a high confidence level. This work comprises the validation of a methodology to analyze the design confidence level for flexibles associated with suspension kinematics. To validate the methodology, the scanned physical model was compared with the virtual simulations using the Simcenter 3D Flexible Pipe software. As inputs data for simulation, it is used geometrical, physical, and chemical information. Through the suspension kinematics study was establish possible movement situations to obtain the flexibles deformations attending to all suspension positions.
Technical Paper

Methodology for the Analysis of Virtual Deformation of Flexible Elements Associated with the Engine Displacement

2015-09-22
2015-36-0171
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thereby enabling the reduction of cost and time of a product development with considerable gain in quality. This work suggests the validation of a methodology for simulation where is possible to improve the confidence level for design flexible components, such Heater and Cooling hoses that are under dynamic engine action, in relation to the physical model. Known the difficulty in predicting non-linear mathematical relationship deformation under effect of forces and moments, was established a study based on experimental measurements where were used as input parameters to simulate the dynamic behavior of flexible components, in this case, coolant hoses.
Technical Paper

How to Achieve Faster, Cheaper and High Quality Parts by RTV Silicone Rubber Process

2005-11-22
2005-01-4095
In the automotive industries, time and parts production costs are fundamental, mainly in prototyping production. The RTV (Room Temperature Vulcanized) process is an important alternative production to flexible silicone molds when you need to inject polyurethane parts. The objective is time reduction in tooling production and parts. RTV requires notable initial investments in equipments. Many times, this cost does not fit in the automotive third part company's budget. This work shows how is possible to obtain parts by RTV process with excellent quality, without high investments in equipments and without quality loss in produced parts. Lead times and tooling and parts costs are analyzed. Due to equipments low costs, this alternative is accessible not only to automotive industries but also to small and medium suppliers.
Technical Paper

GENCHI GENBUTSU A SUCCESSFUL TOOL FOR QUALITY IMPROVEMENT DURING THE PRODUCT DEVELOPMENT PROCESS

2009-10-06
2009-36-0319
The automotive competition is growing every day, and automotive products (vehicles and components) are often developed in one country though it's made based on o global architecture, used and applied in other markets, and with the high competition between automakers, engineers can not afford make mistakes during the product development mainly in global architectures. Be the customer or put yourself in the customer's place is the key to good product planning, design, development, and also, marketing, therefore to understand exactly what the customers are complaining about on the current products to consider this lessons learned on the new products the Genchi Genbutsu is key tool to find the root cause of any problem which is the key to a lasting solution and a successful product development. The article describes some successful steps to apply the Genchi Genbutsu during the automotive product development.
Technical Paper

Front of Dash Pass-Through Design Optimization

2014-09-30
2014-36-0219
Product Design is a process of creating new product by an organization or business entity for its customer. Being part of a stage in a product life cycle, it is very important that the highest level of effort is being put in the stage. The Design for Six Sigma (DFSS) methodology consists of a collection of tools, needs-gathering, engineering, statistical methods, and best practices that find use in product development. DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. In this paper the DFSS methodology is employed to develop the optimal solution to enhance sound transmission loss in a vehicle front of dash pass-through. An integrated approach using acoustic holography and beamforming Noise Source Identification (NSI) techniques is presented as a manner to improve sound insulation during vehicle development.
Technical Paper

Car Suspension Global Product Development: Analysis of Multiple Requirements and Resources Targeting Optimized Results.

2011-10-04
2011-36-0020
In a growing global environment, new products development demands balancing regional requirements and resources in the proposed solutions targeting optimal results. The interaction between Development Centers must pursue, following clearly defined rules, proposals that consider factors from all involved regions. This paper proposes description of important aspects to be considered in Car Suspension Global Product Developments.
Technical Paper

Blanks Physical Parameters Optimization for Automotive Panels Deep Drawing

2013-10-07
2013-36-0204
This work conducted an optimization in sheet metal blank's sizes for cold pressing automotive parts, comparing dimensional characteristics of automotive hood outer panels deep drawn with commonly used blank sizes for this process. As a result, it was possible to suggest modifications to smaller blank sizes, accordingly to the improvement accomplished in this work. The experimental study was conducted from observations in part's superficial aspects after its deep drawing process, which was realized in a commonly used tooling for automotive industry, with a blank's width reduction for the suggested case. The results showed a cost reduction opportunity based in this optimization.
X