Refine Your Search

Topic

Author

Search Results

Technical Paper

Acoustic Development Differences Between Theoretical And Experimental Process for Automotive Exhaust System

2015-09-22
2015-36-0277
Acoustics, in a broad sense, is an essential product attribute in the automotive industry, therefore, it is relevant to study and compare theoretical and numerical predictions to experimental acoustic measurements, key elements of many acoustic development processes. The numerical methods used in the industry for acoustic predictions are widely used for exhaust system optimization. However, the numerical and theoretical predictions very often differ from experimental results, due to modeling simplifications, temperature variations (which have high influence on speed of sound), manufacturing variations in prototype parts among others. This article aims to demonstrate the relevant steps for acoustics development applied in automotive exhaust systems and present a comparative study between experimental tests and computer simulations results for each process. The exhaust system chosen for this development was intended for a popular car 4-cylinder 1.0-liter engine.
Technical Paper

Brake Flexible Dynamic Analysis Attached to McPherson Suspension, Optimizing the Input Parameters in IPS Cable Simulation

2016-10-25
2016-36-0157
The high level of reliability of virtual analysis for suspension system development should not be thinking only for comfort and performance purpose, considering the `growing number of failures due to the touch between components in dynamic condition. The study establishes a simple and optimized methodology, able to predict more accurately the flexible brake hose path subject to the steering motion and associates with the independent suspension course, aiming the best route in order to achieve a low cost and robust design. In turn, the flexible brake hose non-linear model invalidates the multibody study to get the best route. However, with the aid of motion making use of NX9 [1] CAD [2] software was prepared dynamic movement that subjects front independent suspension system that establishes a Cartesian routine that maps 977 points, much higher than 9 points from previous studies, comprising a more accurate path performed by the hose.
Technical Paper

Car Suspension Global Product Development: Analysis of Multiple Requirements and Resources Targeting Optimized Results.

2011-10-04
2011-36-0020
In a growing global environment, new products development demands balancing regional requirements and resources in the proposed solutions targeting optimal results. The interaction between Development Centers must pursue, following clearly defined rules, proposals that consider factors from all involved regions. This paper proposes description of important aspects to be considered in Car Suspension Global Product Developments.
Technical Paper

Carbon Canisters and the Evaporative Emission Level Tendency in Brazil for Passenger Cars

2015-09-22
2015-36-0319
Carbon canisters are used in gasoline passenger vehicle and light duty truck applications. The component is part of the vehicle emission control system. Activated carbon (also known as charcoal) traps hydrocarbon vapors from the fuel tank and vapors created during the fuel tank refueling and venting events. Canister design, charcoal type and performance have been driven by evaporative emission regulations around the world, and evaporative emission requirements have enhanced through the years. The trend of evaporative emission requirements in Brazil indicates the use of improved carbon canisters in the near future. Carbon canisters are needed to store hydrocarbons that would otherwise pollute the environment. Wood based activated carbon is manufactured from sawdust, which is a renewable resource. The result is a healthier earth on which we live. Figure 1 illustrates the activation process of carbon. Figure 1 Activation process of carbon.
Technical Paper

Computational Methodologies for Vehicles Roof Strength Assessment to Prevent Occupants Injury in Rollover Crashes

2009-10-06
2009-36-0267
Among all types of vehicle crashes, rollover is the most complex and yet least understood. During the last decades, a constant increase in the studies involving rollover crashes and injuries associated with it can be observed. Although the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The existing standards and procedures to test rollover crashworthiness are still not suitable to computer simulation because of the huge computational effort required, and the need of faithful/overly complex representation of the aspects involved in real crashes. The objective of the present work is the development of computational models particularly adapted to simulate different standards and procedures used to evaluate the vehicles' roof strength. The models are compared with other approaches, and their advantages/disadvantages are discussed.
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

Design and Test of an Articulated Rear Guard able to Prevent Car Underride

1997-12-31
973106
Rear underride crashes are responsible for thousands of deaths every year in Brazil. To support the fight against this calamity, it was design and tested an articulated guard able to avoid car underride. Because of its articulation capability, this guard can be placed as low as necessary without impairing the truck maneuverability. Crash tests were carried out with the new guard and with another one constructed according to Brazilian standards. The articulated guard was able to avoid underride of a vehicle GM Corsa colliding at 50 km/h in offset of 50%. The other guard could not avoid underride under the same test conditions.
Technical Paper

Development of a Lightweight Fixed Steering Column Applying DFSS Methodology

2014-09-30
2014-36-0103
Over recent years, demands for fuel-efficient vehicles have increased with the rise of the fuel price and public concerns on environment. Recently, application of lightweight materials is increasing in the automobile industry in order to improve mass reduction and consequently fuel efficiency. On this particular study, with a goal of developing a Lightweight Fixed Steering Column, it was identified an opportunity to replace fixed steering column metallic upper and lower brackets by polymeric material. In order to fulfill NVH, Crash, Durability and Performance requirements, a DFSS methodology has been applied. As a result, It was achieved ∼51% of mass reduction, ∼10% of performance improvement with ∼14% of cost increase.
Technical Paper

Development of an Electrical Power Steering for Emergent Markets

2010-10-06
2010-36-0243
Development of an Electrical Power Steering (EPS) system for Emergent Markets, with emphasis on improved fuel economy and cost advantages to the customer. The EPS for Emergent Markets provides high steering wheel assistance on parking maneuvers and appropriate assistance on driving conditions similar to conventional EPS systems. The assistance levels decreases while vehicle speed increases providing better steering feel at high speed conditions (highway tracks). It also provides good tuning capability balanced with piece cost. In addition, this EPS enables an aftermarket bolt-on system for non-assisted steering vehicles (i.e., manual steering vehicles).
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

2011-10-04
2011-36-0267
The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Front of Dash Pass-Through Design Optimization

2014-09-30
2014-36-0219
Product Design is a process of creating new product by an organization or business entity for its customer. Being part of a stage in a product life cycle, it is very important that the highest level of effort is being put in the stage. The Design for Six Sigma (DFSS) methodology consists of a collection of tools, needs-gathering, engineering, statistical methods, and best practices that find use in product development. DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. In this paper the DFSS methodology is employed to develop the optimal solution to enhance sound transmission loss in a vehicle front of dash pass-through. An integrated approach using acoustic holography and beamforming Noise Source Identification (NSI) techniques is presented as a manner to improve sound insulation during vehicle development.
Technical Paper

GENCHI GENBUTSU A SUCCESSFUL TOOL FOR QUALITY IMPROVEMENT DURING THE PRODUCT DEVELOPMENT PROCESS

2009-10-06
2009-36-0319
The automotive competition is growing every day, and automotive products (vehicles and components) are often developed in one country though it's made based on o global architecture, used and applied in other markets, and with the high competition between automakers, engineers can not afford make mistakes during the product development mainly in global architectures. Be the customer or put yourself in the customer's place is the key to good product planning, design, development, and also, marketing, therefore to understand exactly what the customers are complaining about on the current products to consider this lessons learned on the new products the Genchi Genbutsu is key tool to find the root cause of any problem which is the key to a lasting solution and a successful product development. The article describes some successful steps to apply the Genchi Genbutsu during the automotive product development.
Technical Paper

Influence of Understeer Gradient Variation during Cornering in the Vehicle Stability Perception

2014-09-30
2014-36-0209
Drive a vehicle through corners is a very complex activity, since it means change of movement states. Considering a typical corner, the driver starts in a transient state, changes to a steady state and again changes to transient. Those variations make the vehicle change its behavior due specific suspension and steering characteristics. The idea of this paper is show how only one of those characteristics, the understeer gradient, have influence in the stability perception of the driver. The focus is show how the understeer gradient variation can induce perception of low stability in vehicle when cornering no matter the vehicle still keeps its correct path. This variation means an understeer gradient “acceleration”, the metric human being can perceive, in other words the feeling of stability or its lack of.
Technical Paper

Influence of residual stresses in aluminum wheel design

2008-10-07
2008-36-0139
The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

Manual Steering Objective Reference Data Definition based on Subjective Evaluation Correlation

2011-10-04
2011-36-0031
Manual steering is largely employed on emergent markets and it demands high level performance to be competitive. To achieve customer satisfaction, it is important to understand physically and be able to quantify what is good performance regarding imperative steering aspects. Nevertheless, global projects and quality management require objective measurements and reference numbers. The strategy defining the measurements in order to compare among development steps and benchmark must be studied carefully. Objective measurements and subjective evaluation correlation is necessary to define the reference data. In this project, several cars were evaluated and measured performing standard maneuvers. The maneuvers were performed to obtain appropriated and enough information to understand the performance and to do the correlation. The subjective evaluation was normalized and; using objective data, parameters were calculated to represent properly and in a robust form the driver fills.
Technical Paper

Methodology for Virtual Analysis of the Dynamic Behavior of Parking Brake Cable Attached to Leaf Spring Suspension

2017-11-07
2017-36-0128
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thus reducing the time and component cost can generate significant levels of competitiveness and quality. This work suggests the validation of a methodology for simulation, able to predict and quantify the best design of the parking brake cable that although it is flexible, has in its structure composite elements of different mechanical properties. Known difficulty of mathematically predict nonlinear relationships deformation under forces and moments effect was first established, studies based on experimental measurements serve as input parameters for simulating the dynamic behavior of the flexible cable. With the aid of motion making use of NX9 CAD software, it was prepared the dynamic movement that the leaf spring suspension system does.
Technical Paper

Methodology for the Analysis of Virtual Deformation of Flexible Elements Associated with the Engine Displacement

2015-09-22
2015-36-0171
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thereby enabling the reduction of cost and time of a product development with considerable gain in quality. This work suggests the validation of a methodology for simulation where is possible to improve the confidence level for design flexible components, such Heater and Cooling hoses that are under dynamic engine action, in relation to the physical model. Known the difficulty in predicting non-linear mathematical relationship deformation under effect of forces and moments, was established a study based on experimental measurements where were used as input parameters to simulate the dynamic behavior of flexible components, in this case, coolant hoses.
Technical Paper

Methodology for virtual analysis of dynamic behavior for tubes and flexible hoses associated with suspension kinematics

2024-01-08
2023-36-0009
Nowadays the automotive market is reducing product development time and launching more technological vehicles, always focusing on having even more safety with better customer experience which generates big competitiveness and requires more accurate and faster development, the virtual simulations make it possible to meet this new reality with a high confidence level. This work comprises the validation of a methodology to analyze the design confidence level for flexibles associated with suspension kinematics. To validate the methodology, the scanned physical model was compared with the virtual simulations using the Simcenter 3D Flexible Pipe software. As inputs data for simulation, it is used geometrical, physical, and chemical information. Through the suspension kinematics study was establish possible movement situations to obtain the flexibles deformations attending to all suspension positions.
Technical Paper

OVERVIEW OF AUTOMOTIVE COMPONENT FAILURES

2000-12-01
2000-01-3231
The present work gives an overview of the current situation of failures that may occur in automotive components, showing their distribution in the vehicle and the causes that make them occur, trying to emphasize the different materials which are used in the manufacturing of these components. This work is a technical approach strictly supported by an engineering concept which aims to discuss the different factors which contribute to cause premature failures of automotive components, prior to their utilization in the field or when they are exposed to the most variable conditions of use. One of the most important objectives of this study is to call the attention of design engineers, research engineers and manufacturing people to the importance of the components integrity which shall be taken into primary consideration in the design phase as well as in the specification of the material and process of manufacturing.
Technical Paper

Objective Vehicle Comfort Verification About Ride Smoothness Based on Psychophysics

2016-10-25
2016-36-0196
The purpose of the theme developed in this work is to increase the volume of information related to vehicle evaluation and how human perception can be translated into numbers, thus facilitating the process of definitions, refinement and analysis of its performance. Based on the discipline of psychophysics, where it is possible to study the relationship between stimulus and sensation and the use of post processing tool known as PSD (Power Spectral Density), post process the acceleration data of inputs perceived by the occupants of the vehicle, when driving in routes considered ergodic. By this, in a summarized way, get to human subjective perception of comfort. This material shows in a conceptual way a sequence of studies that were conducted to make it possible, to generate a performance classification of the subjective vehicle attribute of Smoothness, by processing values of acceleration measured the driver's seat.
X