Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Technology Impact Forecasting for a High Speed Civil Transport

1998-09-28
985547
This paper outlines a comprehensive, structured, and robust methodology for decision making in the early phases ofaircraft design. The proposed approach is referred to as the Technology Identification, Evaluation, and Selection (TIES) method. The seven-step process provides the decision maker/designer with an ability to easily assess and trade-off the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations. The method also provides a framework where technically feasible alternatives can be identified with accuracy and speed. This goal is achieved through the use of various probabilistic methods, such as Response Surface Methodology and Monte Carlo Simulations. Furthermore, structured and systematic techniques are utilized to identify possible concepts and evaluation criteria by which comparisons could be made.
Journal Article

Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method

2009-11-10
2009-01-3229
This article begins by describing the need for a new method and tool for performing a sustainability assessment for manufacturing processes and systems. A brief literature survey is done to highlight the major existing methods and tools, their function, and their shortcomings. The article goes on to describe the general approach of the method before describing a computer aided tool that has been developed to implement the method. The article concludes with a walk through of a generic use case that describes where such a method would be useful and how such a tool would be implemented.
Technical Paper

Real-Time Integrated Economic and Environmental Performance Monitoring of a Production Facility

2001-03-05
2001-01-0625
In this paper, we describe our work and experiences with integrating environmental and economic performance monitoring in a production facility of Interface Flooring Systems, Inc. The objective of the work is to create a ‘dashboard’ that integrates environmental and economic monitoring and assessment of manufacturing processes, and provides engineers and managers an easy to use tool for obtaining valid, comparable assessment results that can be used to direct attention towards necessary changes. To this purpose, we build upon existing and familiar cost management principles, in particular Activity-Based Costing and Management (ABC&ABM), and we extend those into environmental management in order to obtain a combined economic and environmental performance measurement framework (called Activity-Based Cost and Environmental Management).
Technical Paper

Narrow-Band Excitation of Vortex Flows

2015-09-15
2015-01-2572
At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
Technical Paper

Low Speed Canard-Tip-Vortex Airfoil Interaction

1997-05-01
971469
This paper describes a series of ongoing experiments to capture the details of perpendicular vortex-airfoil interaction. Three test cases explored are: 1) a 21% thick symmetric airfoil at 1.1° angle of attack, 2)a thin flat plate of 2.5% thickness with rounded leading edge, sharp trailing edge and zero angle of attack and 3) A 12% thick symmetric airfoil at zero angle of attack. The tip vortex was generated by a NACA0016 wing at 5° AOA. The strength of the vortex was computed from the velocity profile measured upstream for the first two cases. Pressure measurements on the 21% airfoil were used to quantify the effect of the vortex as a function of its stand-off distance from the airfoil. Vortex trajectories over the airfoils were obtained from laser sheet videography. The vortex motion conforms to potential flow expectations except in regions of pressure gradient and during head-on interaction.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
Technical Paper

Digital Human Modeling for Universal Design

2003-06-17
2003-01-2199
Several research institutions and universities have taken on the challenge of providing solutions for accessible and universally designed workplace accommodations with a focus on people with disabilities. Accessible Design is a subset of what is termed Universal Design. Where Universal Design covers the design of products, systems and environments for all people and encompasses all design principles, Accessible Design focuses on principles that extend the standard design process to those people with some type of performance limitation. In order for individuals with disabiltities to gain better access to the work environments and the products that facilitate independence, health, safety, and social participation a multi-disciplined approach to the research is needed to identify needs and challenges of the targeted population.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Comparison of Water Strategy Tools for Automotive Manufacturing

2014-04-01
2014-01-1958
Tools are now publicly available that can potentially help a company assess the impact of its water use and risks in relation to their global operations and supply chains. In this paper we describe a comparative analysis of two publicly available tools, specifically the WWF/DEG Water Risk Filter and the WBCSD Global Water Tool that are used to measure the water impact and risk indicators for industrial facilities. By analyzing the risk assessments calculated by these tools for different scenarios that include varying facilities from different industries, one can better gauge the similarities and differences between these water strategy tools. Several scenarios were evaluated using the water tools, and the results are compared and contrasted. As will be shown, the results can vary significantly.
Technical Paper

Application of Extended Messinger Models to Complex Geometries

2020-03-10
2020-01-0022
Since, ice accretion can significantly degrade the performance and the stability of an airborne vehicle, it is imperative to be able to model it accurately. While ice accretion studies have been performed on airplane wings and helicopter blades in abundance, there are few that attempt to model the process on more complex geometries such as fuselages. This paper proposes a methodology that extends an existing in-house Extended Messinger solver to complex geometries by introducing the capability to work with unstructured grids and carry out spatial surface streamwise marching. For the work presented here commercial solvers such as STAR-CCM+ and ANSYS Fluent are used for the flow field and droplet dispersed phase computations. The ice accretion is carried out using an in-house icing solver called GT-ICE. The predictions by GT-ICE are compared to available experimental data, or to predictions by other solvers such as LEWICE and STAR-CCM+.
Technical Paper

An Assessment of a Reaction Driven Stopped Rotor/Wing Using Circulation Control in Forward Flight

1996-10-01
965612
The desire of achieving faster cruise speed for rotorcraft vehicles has been around since the inception of the helicopter. Many unconventional concepts have been considered and researched such as the advanced tilt rotor with canards, the tilt-wing, the folding tiltrotor, the coaxial propfan/folding tiltrotor, the variable diameter tiltrotor, and the stopped rotor/wing concept, in order to fulfill this goal. The most notable program which addressed the technology challenges of accomplishing a high speed civil transport mission is the High Speed Rotorcraft Concept (HSRC) program. Among the long list of potential configurations to fulfill the HSRC intended mission, the stopped rotor/wing is the least investigated due to the fact that the existing rotorcraft synthesis codes cannot handle this type of vehicle. In order to develop such a tool, a designer must understand the physics behind this unique concept.
Technical Paper

Aerothermodynamic Design of Supersonic Channel Airfoils for Drag Reduction

1997-10-01
975572
A supersonic channel airfoil (SCA) concept that can be applied to the leading edges of wings, tails, fins, struts, and other appendages of aircraft, atmospheric entry vehicles and missiles in supersonic flight for drag reduction is described. It is designed to be beneficial at conditions in which the leading edge is significantly blunted and the Mach number normal to the leading edge is supersonic. The concept is found to result in significantly reduced wave drag and total drag (including skin friction drag) and significantly increased L/D. While this reduction over varying flight conditions has been quantified, some leading edge geometries result in adverse increases in peak heat transfer rates. To evaluate the effectiveness of SCAs in reducing drag without paying any penalties in other areas like lifting capacity, heating rates or enclosed volume, the design space was studied in greater detail using MDO methods.
Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
X