Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero-dimensional Modeling of Flame Propagation During Combustion of Natural Gas/Hydrogen Mixtures

2023-04-11
2023-01-0190
To achieve global climate goals, greenhouse gas emissions must be drastically reduced. The energy and transportation sectors are responsible for about one third of the greenhouse gases emitted worldwide, and they often use internal combustion engines (ICE). One effective way to decarbonize ICEs may be to replace carbon-containing fossil fuels such as natural gas entirely, or at least partially, with hydrogen. Cost-effective development of sustainable combustion concepts for hydrogen and natural gas/hydrogen mixtures in ICEs requires the intensive use of fast and robust simulation tools for prediction. The key challenge is appropriate modeling of flame front propagation. This paper evaluates and applies different approaches to modeling laminar flame speeds from the literature. Both appropriate models and reaction kinetic calculations are considered.
Technical Paper

Virtual Sensors in Small Engines – Previous Successes and Promising Future Use Cases

2023-10-24
2023-01-1837
Virtual sensing, i.e., the method of estimating quantities of interest indirectly via measurements of other quantities, has received a lot of attention in various fields: Virtual sensors have successfully been deployed in intelligent building systems, the process industry, water quality control, and combustion process monitoring. In most of these scenarios, measuring the quantities of interest is either impossible or difficult, or requires extensive modifications of the equipment under consideration – which in turn is associated with additional costs. At the same time, comprehensive data about equipment operation is collected by ever increasing deployment of inexpensive sensors that measure easily accessible quantities. Using this data to infer values of quantities which themselves are impossible to measure – i.e., virtual sensing – enables monitoring and control applications that would not be possible otherwise.
Technical Paper

Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels

2017-11-05
2017-32-0070
The development of future internal combustion engines and fuels is influenced by decreasing energy resources, restriction of emission legislation and increasing environmental awareness of humanity itself. Alternative renewable fuels have, in dependency on their physical and chemical properties, on the production process and on the raw material, the potential to contribute a better well-to-wheel-CO2-emission-balance in automotive and nonautomotive applications. The focus of this research is the usage of alcohol fuels, like ethanol and 2-butanol, in motorcycle high power engines. The different propulsion systems and operation scenarios of motorcycle applications in comparison to automobile applications raise the need for specific research in this area.
Technical Paper

Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines

2015-11-17
2015-32-0817
Millions of small displacement single-cylinder engines are used for the propulsion of scooters, motorcycles, small boats and others. These SI-engines represent the basis of an affordable mobility in many countries, but at the same time their efficiency is quite low. Today, the limited fossil fuel resources and the anthropogenic climate require a sustainable development of combustion engines, the reduction of fuel consumption being an important factor. A variety of different strategies (turbo-charging, cylinder deactivation, direct injection, etc.) are investigated here to increase the efficiency of multi-cylinder engines. In the case of small displacement single-cylinder engines, other strategies are required because of their special design and the high pressure on costs. In the context of this paper different layout parameters which have an influence on the working process are investigated, with the aim of increasing the efficiency of small displacement single-cylinder engines.
Technical Paper

The Potential of New Vehicle Concepts For Transport Optimization and GHG Emission Reduction in Urban Areas

2014-04-01
2014-01-1005
Increasing urbanization, the growing degree of motorization and traffic performance in urban areas and environmental aspects like greenhouse gas emissions (GHG) are the motivation for a detailed analysis of personal individual mobility in urban areas, which is presented in this study. In the first step, the publication examines a study of market potential of new small and lightweight vehicle concepts. A mobility inquiry conducted in a mid-sized European city enables an estimation of the potential user groups for alternative vehicle concepts for individual urban traffic. In a second step, the CO2 reduction potential of urban car concepts is simulated for a generic vehicle fleet. This fleet consists of conventional vehicles of various classes (subcompact, compact, mid-sized …) as well as new lightweight urban car concepts. A novel vehicle concept for urban transportation will be presented as well.
Technical Paper

Technologies to Achieve Future Emission Legislations with Two Stroke Motorcycles

2018-10-30
2018-32-0042
Increasingly stringent emission regulations force manufacturers of two wheelers to develop low emission motorcycle concepts. Especially for small two-stroke engines with symmetrical port timing structure, causing high HC-emissions due to scavenge losses, this is a challenging demand that can only be met with alternative mixture formation strategies and by intensifying the use of modern development tools. Changing from EU4 to EU5, emission legislation will not only have an impact on the improvement of internal combustion but will also drastically change the after-treatment system. Nowadays, small two-stroke engines make use of a simple carburetor for external mixture preparation. The cylinders are scavenged by air/fuel mixtures. Equipped with exhaust gas after-treatment systems, such as secondary air with two or three catalytic converters, the emission limits for EURO 4 homologation can be achieved with carbureted engines.
Technical Paper

Systematic Experimental Creep Groan Characterization Using a Suspension and Brake Test Rig

2017-09-17
2017-01-2488
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Technical Paper

Strategies for Emission Reduction on Small Capacity Two-Wheelers with Regard to Future Legislative Limits

2014-11-11
2014-32-0031
Looking at upcoming emission legislations for two-wheelers, it is quite obvious that the fulfilment of these targets will become one of the biggest challenges within the engine development process. The gradual harmonization of emission limits for two-wheelers with existing automotive standards will subsequently lead to new approaches regarding mixture preparation and exhaust gas aftertreatment. Referring to these future scenarios, a state-of-the-art in development of catalytic converters for two- or three-wheeler applications should be presented. After choosing a suitable test carrier, which has already been equipped with EFI components including an oxygen sensor for λ=1 operation mode, a basic injection system calibration was used to optimize the combustion process. Based on this setup, a variable exhaust system was manufactured to be able to integrate different catalyst configurations.
Technical Paper

Size distribution of particulate matter~Results from roadside measurements

2001-09-23
2001-24-0078
Measurements of ultrafine particles (diameter < 300 nm) and total suspended particulates (TSP) were performed in 2 tunnels (Lundby, Gothenborg, S, and Plabutsch, Graz, A). The measurements in the Lundby tunnel were performed directly in the tunnel tube at the roadside whereas the measurements at the Plabutsch tunnel took place at the top of a 90 m high ventilation shaft. There was good correlation for all diameters (7.91 nm - 300 nm) between ultrafine particles and TSP for the measurements at the Lundby tunnel. At the Plabutsch site a correlation between ultrafine particles and TSP was detected only for particles > 35 nm. The maximum of the particle size distribution function for Lundby was at 30 nm and for the Plabutsch tunnel at 80 nm.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Potential of E85 Direct Injection for Passenger Car Application

2010-10-25
2010-01-2086
This paper presents an analysis of the potential of E85 (a mixture of 85 % (bio)ethanol and 15 % gasoline) as a fuel for spark-ignition (SI) direct-injection internal combustion engines. This involves investigation of not only application to downsizing concepts with high specific power but also behavior relating to emissions and efficiency at both part and full load. Measurements while running on gasoline were used for comparison purposes. The first stage involved analysis using 1D simulation of two different downsizing concepts with regard to turbocharging potential and performance. Following this, various influential parameters such as injector position, injection pressure, compression ratio, degree of turbocharging etc. were investigated on a single cylinder research engine. In the case of high pressure direct injection, particulate emissions also play an important role, so particulate count and particulate size distribution were also studied in detail.
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Technical Paper

Parameterization Process of the Maxwell Model to Describe the Transient Force Behavior of a Tire

2017-03-28
2017-01-1505
The present technical article deals with the modeling of dynamic tire forces, which are relevant during interactions of safety relevant Advanced Driver Assistance Systems (ADAS). Special attention has been paid on simple but effective tire modeling of semi-physical type. In previous investigations, experimental validation showed that the well-known first-order Kelvin-Voigt model, described by a spring and damper element, describes good suitability around fixed operation points, but is limited for a wide working range. When aiming to run vehicle dynamics models within a frequency band of excitation up to 8 Hz, these models deliver remarkable deviations from measured tire characteristics. To overcome this limitation, a nonlinear Maxwell spring-damper element was introduced which is qualified to model the dynamic hardening of the elastomer materials of the tire.
Technical Paper

Optimization Approach to Handle Global CO2 Fleet Emission Standards

2016-04-05
2016-01-0904
A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
Journal Article

Novel Range Extender Concepts for 2025 with Regard to Small Engine Technologies

2011-11-08
2011-32-0596
Energy politics and environmental circumstances demand novel strategies for private transport. Several studies have shown that one of these possibilities can be an electric vehicle with a range extender - REX. Today these REX engines are under way as derivation from modern internal combustion engines. As the need for an optimized usage of energy will further increase in the future, alternative energy converter systems have to be investigated. For DENSO, as supplier of components, it is of strong interest how the basic layout of these concepts could look like. This is necessary in order to be prepared for the specific needs of these concepts in terms of auxiliaries, electric / electronic components as well as for the cabin climate & various control strategies. In these REX-concepts all energies have to be considered. A sophisticated usage of energy inside a REX vehicle is required which leads to the investigation of a combined heat and power usage on-board.
Technical Paper

New Approaches to Lube Oil Consumption Measurement Based on the Tracer Method

2019-01-15
2019-01-0077
In the research and development of internal combustion engines, there are several drivers for developing an accurate online lube oil consumption (LOC) measurement system. Lube oil consumption is considered to be a root cause of hydrocarbon and particle emissions and lubricating oil autoignition. It also negatively influences the life cycle cost for engine operators. Highly accurate measurement of lube oil consumption must be possible before it can be reduced - or rather optimized - to levels stakeholders will require in the future. State-of-the-art methods such as gravimetric and volumetric measurements are not fully satisfactory for several reasons. Generally, offline LOC measurement is no longer suitable for fast and accurate measuring cycles, oil condition monitoring and wear monitoring. At present, tracer methods are considered to be the most promising approach. However, current tracer methods have their downsides as well.
Journal Article

Modular Fault Diagnosis System for Engine Test Bed Measurements

2017-03-28
2017-01-0386
To achieve high power output and good efficiency and to comply with increasingly stricter emission standards, modern combustion engines require a more complex engine design, which results in a higher number of control parameters. As the measurement effort and the number of sensors for engine development at the test bed continue to increase, it is becoming nearly impossible for the test bed engineer to manually check measurement data quality. As a result, automated methods for analysis and plausibility checks of measurement data are necessary in order to find faults as soon as they occur and to obtain test results of the highest possible quality. This paper presents a methodology for automated fault diagnosis on engine test beds. The methodology allows reliable detection of measurement faults as well as the identification of the root cause of faults.
X