Refine Your Search

Topic

Author

Search Results

Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

Validation of the PC-Crash Pedestrian Model

2000-03-06
2000-01-0847
The pedestrian model in PC-Crash is based on a multi-body system, where several bodies are interconnected by joints. Each of these bodies can have different properties to represent the different parts of the human body. The joint properties can be specified independently as well. The theoretical background of the pedestrian model has been introduced in SAE 1999-01-0445 and the model shows to give a good correlation of the gross movement of the pedestrian compared to crash test data. As there are many parameters, which can and have to be specified for the pedestrian model as input parameters, an in depth validation of the different parameters has to be done to validate this model. This paper describes in detail the validation process for the pedestrian model. A significant number of crash tests (approx. 30) was used as a basis to compare the results of the simulations and the real movement of the test subjects.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

The Potential of Key Process/Performance Indicators (KPIs) in Automotive Software Quality Management

2016-04-05
2016-01-0046
A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
Technical Paper

Systematic Experimental Creep Groan Characterization Using a Suspension and Brake Test Rig

2017-09-17
2017-01-2488
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Subjective Evaluation of Advanced Driver Assistance by Evaluation of Standardized Driving Maneuvers

2013-04-08
2013-01-0724
Advanced Driver Assistance Systems (ADAS) for collision avoidance/mitigation have already demonstrated their benefit on vehicle safety. Often those systems have an additional functionality for comfort to assist the driver in non-critical driving. The verification of ADAS functionality using different test scenarios is currently investigated in many different projects worldwide. A harmonization of test scenarios and evaluation criteria is not yet accomplished. Often, these test scenarios focus on objective collision avoidance and not on the subjective interaction between driver and vehicle. The present study deals with the development of an experimental validation plan for the systems Automatic Cruise Control (ACC), Lane Departure Warning (LDW) and Lane Keeping Assist (LKA). Standardized driving maneuvers with two or more vehicles equipped with synchronized measurement are performed by professional test drivers.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Journal Article

New and Innovative Combustion Systems for the H2-ICE: Compression Ignition and Combined Processes

2009-04-20
2009-01-1421
Hydrogen nowadays is considered one promising energy carrier for future mobility scenarios. Its application as a fuel in ICEs greatly benefits from Direct Injection (DI) strategies, which help to reduce the disadvantages of PFI systems such as air displacement effects, knocking, backfiring and low power density. In SI-engines one appropriate way to increase efficiency is the reduction of wall heat losses by jet- and/or wall-guided mixture formation systems. In theory, Compression Ignition (CI) systems employing a diffusion type of combustion allow for a significant raise in compression ratio and, thus, are likely to excel the SI concept in terms of efficiency. The following paper deals with results obtained from investigations on H2 Compression-Ignition (H2-CI) combustion systems by employing both thermodynamic research engines and 3D CFD simulation.
Technical Paper

Multimethod Concept for Continuous Wear-Analysis of the Piston Group

2018-04-03
2018-01-0839
Friction losses as well as lube oil consumption at the piston group are key factors for future engine downsizing concepts regarding to emissions and consumption. This means an early identification of friction losses and wear is essential within development. The main problem is that the wear assessment is based on long durability tests which are typically performed in a later phase. This may lead to the fact that an early optimized configuration with respect to friction can cause a potential wear problem later in the durability test program. Still ongoing trends in combustion engine engineering lead to both the minimized oil supply in the tribocontact piston bore interface and improved wear resistance. One is forced to the conclusion that understanding and quantifying wear will be a key driver for the future engine development process. The aim is a holistic concept that combines different methods to investigate wear and furthermore its combination with friction loss studies.
Technical Paper

Mechanical Design of In-Wheel Motor Driven Vehicles with Torque-Vectoring

2011-10-04
2011-36-0132
Volatile oil prices and increased environmental sensitivity together with political concerns have moved the attention of governments, automobile manufacturers and customers to alternative power trains. From the actual point of view the most promising concepts for future passenger cars are based on the conversion of electrical into mechanical energy. In-wheel motors are an interesting concept towards vehicle electrification that provides also high potentials to improve vehicle dynamics and handling. Beside aspects concerning the electric system (e.g. motor type, energy storage, and control strategy), there are also some open questions related with the mechanical design of in-wheel motor driven vehicles that need to be solved before series production.
Technical Paper

Measuring System Approach to Analyze Brake Squeal Triggering Mechanism

2011-09-18
2011-01-2359
There are several different possibilities to analyze a squealing brake system. The present paper introduces a complex measuring system which is mounted on a complete vehicle axle at a test rig. This system was developed because the previously performed state-of-the-art tests did not allow any insights in the squeal triggering mechanisms. First of all, a frequency analysis was performed. Thereby the main vibrating parts and the directions of the oscillation could be determined during a squeal event. The second was a modal analysis of the vehicle axle, which was necessary to get further insights into the system as well as to verify an existing Finite Element Method model. Through these tests, however, it was not possible to get any insight into the contact area, and therefore it was impossible to determine the squeal triggering mechanism. Because of this limitation, special guide pins were developed, which are able to measure the vibrating friction force.
Technical Paper

Measuring Brake Wear Particles with a Real-Driving Emissions Sampling System on a Brake Dynamometer

2022-09-19
2022-01-1180
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno.
Technical Paper

Investigation of the Thermal Vehicle Brake Behavior During the Vehicle's Development Phase by Co-Simulation

2007-10-07
2007-01-3935
The mathematical thermal design of the vehicle brakes will lead to success if all influence parameters such as friction (fading effect), car geometry and inertia, brake amplifier, tire, convective heat flow, heat conductance and heat radiation are taken into consideration. In addition to a lot of design criteria, the thermal stability of the vehicle brake is becoming more and more important because of permanently increasing engine powers and weight of the vehicles. This requires both stable friction behavior in the contact zone between brake lining and brake disk and a sufficient transfer of the friction energy by means of convective heat flow. In order to accomplish these two tasks, considerable expense on a brake test bed and innumerable brake trials are necessary. It must be guarantied at the end of the brake design process that the vehicle reaches the required braking distance and the thermal stability of the brake, e.g. after several freeway braking sequences.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle’s design and connections. Consequently, they neglect the role of attack paths from a vehicle’s interfaces to its assets.
Technical Paper

How to Use PC-CRASH to Simulate Rollover Crashes

2004-03-08
2004-01-0341
Due to the increasing number of minivans and sport utility vehicles, rollovers have become more significant. As a result, various accident reconstruction programs have been developed to address this issue. To reconstruct rollover crashes, various requirements have to be fulfilled. These consist of: providing a simple method that is able to model three dimensional environments that often play a major role in rollovers. including suspension, tire and collision models must be provided. This is particularily important in the rollover initiation phase. including proper vehicle geometry and contact stiffness must be available. These are important for simulation of body contacts that affect the vehicle motion. This study focuses on one program, PC-CRASH. This program was developed to allow simulations of vehicle 3-dimensional movements before, during and after the impact. The study also discusses the physical background of the models, their capabilities as well as their limitations.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

High Mileage Emission Deterioration Factors from Euro 6 Positive and Compression Ignition Vehicles

2022-08-30
2022-01-1028
The current European fleet of vehicles is ageing and lifetime mileages are rising proportionally. Consequently, a substantial fraction of the vehicle fleet is currently operating at mileages well beyond current durability legislation (≤ 160,000 km). Emissions inventories and models show substantial increases in emissions with increasing mileage, but knowledge of the effect of emissions control system deterioration at very high mileages is sparse. Emissions testing has been conducted on matched pairs (or more) of diesel and gasoline (and CNG) vehicles, of low and high mileage, supplementing the results with in-house data, in order to explore high mileage emission deterioration factors (DF). The study isolated, as far as possible, the effect of emissions deterioration with mileage, by using nominally identical vehicle models and controlling other variables.
Technical Paper

Friction Force Measurement at Brake Discs

2011-05-17
2011-01-1576
Experimental researches on brake squeal have been performed since many years in order to get an insight into friction-excited vibrations and squeal triggering mechanisms. There are many different possibilities to analyse brake squeal. The different operating deflection shapes can be detected using e.g. laser vibrometer systems or acceleration sensors. Piezoelectric load cells can be used for the measurement of the normal contact force of the brake pad. The presented test setup measures not only the mean value of the friction force between brake pad and disc at a certain brake pressure, but also the superposed vibration of this force, which only occurs during a squeal event. Therefore the guide pins of the brake caliper are replaced by modified ones. The brake pads are held in position by these pins and the resulting force of the brake torque, hence the friction force, acts on these pins. The shape of the pins is optimized for measuring these forces.
X