Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Technical Paper

Viability of Alternative Fuels to Decarbonize the World’s Largest Agricultural Tractor Market

2024-01-16
2024-26-0065
India is the market with the highest sales of agricultural tractors and the market with the highest number of agricultural tractor park, as well. Even though taking into account the lower average power of Indian agricultural tractors compared to regions with considerably larger field sizes, their cumulated diesel fuel consumption reaches a significant size. The possible use of alternative powertrains like battery-electric, especially considering the lower power of the Indian tractor market, seems feasible, but might be struggling with challenges in terms of charging infrastructure and the possibly resulting lower productivity due to required charging times. Therefore AVL proposes to investigate the use of alternative fuels for internal combustion engines, a topic which is also being discussed by other global tractor OEMs. In that context the focus is typically on higher tractor powers due to current storage limitations of battery-electric systems and other alternatives.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Vehicle Sound Engineering by Modifying Intake / Exhaust Orifice Noise Using Simulation Software

2003-05-05
2003-01-1686
Apart of other aspects, the interior sound of a passenger car brand has to meet customer expectations. For optimizing the sound of a passenger car, target sounds have first to be established via the operating range of the vehicle. For an effective sound engineering approach an objective description and evaluation of vehicle interior sound is beneficial. Such an objective description guarantees the effective and reproducible implementation of the required brand sound in the vehicle development process. In such a process it is necessary to reduce on the one hand annoying undesired noise aspects and to create on the other hand the relevant and necessary noise parameters to meet the target sounds head on.
Technical Paper

Vehicle Class Based Validation Program for Electrified Powertrain Vibration Testing

2023-04-11
2023-01-0920
Vibration testing is common in automotive industry validation and gains greater significance with increasing numbers of electrical components, which are particularly suspectable to vibration related failures. While the nature and intention of vibration testing is common, many contradicting testing standards claim to be a one-size-fits-all solution, leading to questions of which standard is correct for any specific application. This is compounded by the vast variation in vehicle types and applications (suspension systems, dampers, powertrain mass, tire radius, intended usage, etc.) This paper seeks to offer and demonstrate a method to determine characteristic vibration profiles, based on vehicle classes, and illuminate the process to accelerate these to an appropriate test profile. This can either be used to directly validate a system or to support the selection of the most appropriate vibration profile from options within standards.
Technical Paper

Validation of Powertrain Systems Based on Usage Space Analysis Considering Virtual Road Load Profiles

2024-04-09
2024-01-2424
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements.
Journal Article

Turbocharger Noise Quality Parameters for Efficient TC Noise Assessment and Refinement

2016-06-15
2016-01-1817
Due to more challenging future emission legislations and the trend towards downsizing, the number of turbocharged (TC) engines, especially petrol engines, is steadily increasing. The usage of TC has high risk to cause different noise phenomena apparent in the vehicle interior which are often perceived as annoying for the passengers. In order to further improve consideration of TC topics in the development, objective judgment and monitoring of TC noise issues is of high importance. Therefore, objective parameters and corresponding tools that are especially focusing on TC noise phenomena have to be developed. One main target of these tools is to deliver an objective TC assessment in an efficient way and with minimum additional effort. Application of the criteria presented in this publication therefore allows acoustic engineers to judge the NVH behavior and annoyance of the TC with respect to its vehicle interior noise contribution.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines

2015-11-17
2015-32-0817
Millions of small displacement single-cylinder engines are used for the propulsion of scooters, motorcycles, small boats and others. These SI-engines represent the basis of an affordable mobility in many countries, but at the same time their efficiency is quite low. Today, the limited fossil fuel resources and the anthropogenic climate require a sustainable development of combustion engines, the reduction of fuel consumption being an important factor. A variety of different strategies (turbo-charging, cylinder deactivation, direct injection, etc.) are investigated here to increase the efficiency of multi-cylinder engines. In the case of small displacement single-cylinder engines, other strategies are required because of their special design and the high pressure on costs. In the context of this paper different layout parameters which have an influence on the working process are investigated, with the aim of increasing the efficiency of small displacement single-cylinder engines.
Technical Paper

The Patch-Transfer-Function (PTF) Method Applied to Numerical Models of Trim Materials Including Poro-Elastic Layers

2018-06-13
2018-01-1569
In automotive industry, acoustic trim materials are widely used in order to reach passenger comfort targets. The dynamic behavior of the poro-elastic materials is typically modelled by the Biot theory, which however leads to expensive numerical finite element calculations. One way to deal with it is to use the Patch-Transfer-Function (PTF) sub-structuring method, which couples subdomains at their interfaces through impedance relations. This was done already for systems including locally reacting poro-elastic materials. In this paper, a methodology is presented allowing to numerically assess the PTF impedance matrices of non-locally reacting trim materials using the Biot based poro-elastic model solved by the finite element method (FEM). Simplifications of the trim impedance matrices are introduced resulting in considerable calculation cost reductions. The associated prediction errors are discussed by means of a numerical case study.
Technical Paper

The OBD System Development Database - a Solution for Knowledge Management and Tool Supported Control System Design and Calibration

2014-04-01
2014-01-1171
The correct information about legal demands of the On-Board-Diagnostic (OBD) system in a vehicle project is required throughout the entire development process. Usually, the main obstacle in succeeding is to provide the company's expertise of some few experts for all employees who work in OBD related projects. The paper describes the AVL solution for knowledge management and tool supported control system design and calibration: OBD System Development Database. The software enables the user to access the regulatory requirements for a specific application and legislation from past, present and future (proposed rule-making) point of view. Information concerning already available and stored monitoring concepts is linked to the requirements in order to re-use potentially suitable concepts and to enable an efficient knowledge exchange within the company.
Technical Paper

The Creation of a Car Interior Noise Quality Index for the Evaluation of Rattle Phenomena

1997-05-20
972018
Rattle noise produced in the vehicle interior due to broadband excitation by road irregularities is a major concern with respect to driving comfort, and therefore has become one of the most important topics of acoustic development in recent years. A quantification i.e. measurement of this rattle noise is of fundamental importance for systematic development work and production control. Common noise level measurements (dB, dBA, etc. ) do not represent the rattle character in the vehicle interior as revealed during initial investigations. To overcome this problem and to substitute the subjective assessment with a combination of measurable parameters, the psychoacoustic software AVL-EAR was applied to create an Interior Rattle Quality Index. Based on more than 40 different vehicles that have been subjectively assessed by approximately 70 test persons, the index was generated by means of multiple pair comparisons and statistics on measurement data.
Technical Paper

Systematic Experimental Creep Groan Characterization Using a Suspension and Brake Test Rig

2017-09-17
2017-01-2488
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

Simulation and Application of Lightweight Damping Sandwich Material for I.C. Engines

2018-06-13
2018-01-1565
Making lighter engines is in the agenda of all OEMs in order to make their cars lighter and to reduce CO2 emission based on regulations. On the other hand, the noise regulations are getting more stringent and the customer impression of interior sounds is still an important aspect in vehicle development. Vehicle noise legislation has been revised numerous times since it was first established in February 1970. The latest revision in EU legislation introduces a revised test method which is used to enforce diminishing noise limits in three phases (EU Regulation No. 540/2014). Since 2016 the noise limit for passenger cars has been 72 dB(A). It will be reduced to 70 dB(A) in 2020 and to 68 dB(A) in 2024. These vehicle pass by noise limits cascade down to limitations on engine noise. New engine designs face a trade-off between a lightweight design and fulfilling the NVH targets. The conventional design updates are done by adding ribs and usually mass to the engine.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Journal Article

Real-World Fuel Consumption Measurement as the Base for the Compliance to Future CO2 Regulations

2019-01-09
2019-26-0357
The gap between the officially reported CO2 values and the actual performance of the vehicle on the road is continuously increasing. Numerous studies are showing differences between the official values and the real-world measurements of more than 40% in average, with further increases year by year. The fuel consumption of passenger cars are determined as part of the vehicle certification according to Euro 6 via carbon mass balance using exhaust gas measurement. By introducing the new world harmonized driving cycle (WLTC) in September 2017, which is addressing a more realistic speed profile or traffic conditions, the gap between the certification and road test is expected to be reduced in half. Additionally the EU Commission plans to monitor vehicles more closely. From 2020, devices for recording fuel and energy consumption will become mandatory in all passenger cars and light commercial vehicles, reflecting the average real world CO2 emissions.
X