Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Synchronization of Source Signals for Transfer Path Analysis and Synthesis

2014-06-30
2014-01-2086
In the engine development process, the ability to judge NVH comfort as early as possible is a great benefit. The prediction of engine noise on the basis of a prototype engine without the need to install it in a real car significantly speeds up the development process and leads to a cost reduction, as prototype modifications can be evaluated faster. Meaningful predictions of the perceived NVH comfort cannot be achieved just by comparing order levels, but require listening to an auralization of the engine noise at the driver's position. With the methods of Transfer Path Analysis and Synthesis (TPA/TPS) a prototype engine can be virtually installed in a car using test-bench data. The interior noise can be estimated by combining source signals containing near-field airborne noise radiation and mount forces with transfer functions describing the transmission to the target position in the cabin.
Journal Article

Psychoacoustic Order Tonality Calculation

2019-06-05
2019-01-1466
Quantifying tonalities in technical sounds according to human perception is a task of growing importance. The psychoacoustic tonality method, published in the 15th edition of the ECMA-74 standard, is a new method that is capable of calculating the perceived tonality of a signal. Other methods, such as Prominence Ratio or Tone-to-Noise Ratio do not consider several essential psychoacoustic effects. The psychoacoustic tonality is based on a model of human hearing and thus is able to model human perception better than other methods. The algorithm described in ECMA-74 calculates tonality over time and frequency. In practice, tonalities often originate from rotating components, for example, parts of an electric motor. In these cases, quantification of the tonality of orders is often more interesting than the tonality over frequency. In this paper, an extension of the psychoacoustic tonality according to ECMA-74 is presented.
Technical Paper

Progresses in Pass-by Simulation Techniques

2005-05-16
2005-01-2262
Pass-by measurements on a test track are a standard test procedure for every new vehicle. Since there are only a few test tracks and the measurements are depending on the environmental conditions two indoor test procedures have been developed using a chassis dynamometer in a semi anechoic chamber. The first procedure delivers the standard pass-by analyses as well as monaural and binaural time signals using a far field array measurement. The second procedure delivers more detailed information about the different noise sources at the vehicle. Near field measurements of the main noise sources of the vehicle are combined with the airborne transfer functions between these sources and a far field observer position to get a simulated far field microphone signal of the whole vehicle or any set of components
Technical Paper

Method of NVH Quality Rating of Diesel Combustion Noise Using Typical Driving Modes

2009-05-19
2009-01-2078
The development of a new method to evaluate the NVH quality of diesel combustion noise bases upon following questions by regarding typical driving modes: Driving behavior with diesel vehicles Which driving situation causes an annoying diesel combustion noise Judgment of diesel combustion noise as good or bad A suitable test course was determined to regard typical driving situations as well as the European driving behavior. Vehicles of different segments were tested on that course. The recorded driving style and the simultaneously given comments on the diesel combustion noise results to a typical driving mode linked to acoustics sensation of diesel combustion noise. The next step was to simulate this driving mode on the chassis dynamometer for acoustical measurements. The recordings of several vehicles were evaluated in listening test to identify a metric. The base of metric was objective analyses evaluating diesel combustion noise in relevant driving situations.
Technical Paper

Interactive Auralization of Powertrain Sounds Using Measured And Simulated Excitation

2007-05-15
2007-01-2214
Interior vehicle sound is an important factor for customer satisfaction. To achieve an optimized product sound at an early stage of development, subjective evaluation methods as well as analysis and prediction tools must be combined to provide reliable information relevant to product quality and comfort judgments. Binaural Transfer Path Synthesis (BTPS) is a well-known method to calculate interior noise and vibrations based on multi-channel input measurements. Recent enhancements of the BTPS method enable taking into account also simulated excitations, for example engine mount vibrations calculated using MBS and/or FEM simulations, allowing the prediction of interior noise even if the engine is not available in hardware. Interactive evaluation of the generated sounds in a vibro-acoustic driving simulator helps to increase understanding of customer responses and perception of target sounds.
Technical Paper

Improving Diesel Sound Quality on Engine Level and Vehicle Level - A Holistic Approach

2007-05-15
2007-01-2372
Diesel impulsiveness (so called Diesel knocking) present in the cabin of diesel vehicles is perceived as unpleasant because of its impulsive time structure. JD Power data clearly show the customers preference of vehicles with little Diesel knocking over those with severe knocking. Corresponding objective descriptors that reflect the customers' perception are introduced. The occurrence of such noise patterns is influenced by the combustion process itself as well as by all excited mechanical components within the power train. Further the transfer characteristics of the engine structure and various vehicle noise paths do contribute to a poor Diesel Sound Quality. It is essential that all these factors have to be considered in combination. This paper provides an overview about suitable methods and technologies, including Binaural Transfer Path Analysis and Synthesis. The potential of the approach is demonstrated by an example.
Technical Paper

Identification of Important Issues and Driving Modes for Enhancing NVH Performance of Electric Vehicles Based on Comparative Analysis of User Experience with Conventional ICE Vehicles

2024-04-09
2024-01-2341
The challenges concerning noise, vibration, and harshness (NVH) performance in the vehicle cabin have been significantly changed by the powertrain shift from a conventional drive unit with an internal-combustion engine (ICE) to electric drive units (eAxles). However, there is few research regarding the impact of electrification on NVH considering the influence of the context such as multi-stimuli and traffic rules during a real-life driving. In this study, the authors conducted test drives using EVs and ICEVs on public roads in Europe and conducted a statistical analysis of the difference in driver impression of NVH performance based on interviews during actual driving. The impression data were categorized into clusters corresponding to related phenomena or features based on driver comments. Furthermore, the vehicles data (vehicle speed, acceleration, GPS information, etc.) were recorded to associate the driver impressions with the vehicle’s conditions when the comments were made.
Technical Paper

Future Acoustics of Electric-Vehicle

2012-11-25
2012-36-0612
Since currently a technological shift from automobiles with internal combustion engines now to electric vehicles occurs, new challenges in vehicle acoustics must be met. Although, one of the core duties of NVH engineers will still be the prevention and treatment of disturbing noises, the targeted creation of intended and designed sounds will gain in importance significantly. This sound design task is no longer a choice but a necessity. In the scope of hybrid and electric cars a new kind of acoustic feedback must be created. Surely, the simple electric motor sound, the “tram on wheels”, will not be the final solution accepted by customers. Besides the mandatory use of technical methods like transfer path analysis enabling the reliable identification of the reasons for acoustical problems by separation of sources and transfer paths or binaural panel contribution analysis, investigations of customer preferences on the basis of simulated and real test drives will become more important.
Technical Paper

Binaural Transfer Path Analysis and Synthesis (BTPA/BTPS) using Substructuring Techniques Based on Finite Element Analysis (FEA) and Measurements

2007-05-15
2007-01-2226
Binaural Transfer Path Analysis and Synthesis (BTPA/BTPS) were originally developed for assessing the binaural contributions of individual vehicle noise paths. They are powerful modeling tools, enabling engineers to explore noise transfer mechanisms by distinguishing between excitation source strengths and the transfer behavior of individual elements. The methods used in BTPA and BTPS are now more frequently confronted with limitations which can only be handled by detailed observation of the various influencing variables. A promising method is to describe the mechanical interfaces via four-pole parameters. Using this technique, changes in transfer paths (e.g. exchange of engine mounts) can be simulated by a tool providing immediately-audible results.
Technical Paper

A Virtual Car: Prediction of Sound and Vibration in an Interactive Simulation Environment

2001-04-30
2001-01-1474
Feeling and hearing the results of engineering decisions immediately via a “virtual car” - simultaneous engineering - can significantly shorten vehicle development time. Sound quality and discrete vibration at the driver's position may be predicted and “driven” before the first prototype is built. Although sound cannot yet be predicted in an unknown chassis, the sound and vibration behavior resulting from a new engine, never previously installed in a given vehicle, may be predicted, heard binaurally and felt in an interactive “drivable” simulation based on transfer path analysis. Such a simulation, which includes the binaural sound field and discrete vibration of steering wheel and seat, can also include wind and tire noise to determine if certain engine contributions in sound and vibration may be masked.
X