Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

EGR Cooler Fouling Reduction: A New Method for Assessment in Early Engine Development Phase

2022-03-29
2022-01-0589
High pressure EGR provides NOx emission reduction even at low exhaust temperatures. To maintain a safe EGR system operation over a required lifetime, the EGR cooler fouling must not exceed an allowable level, even if the engine is operated under worst-case conditions. A reliable fouling simulation model represents a valuable tool in the engine development process, which validates operating and calibration strategies regarding fouling tendency, helping to avoid fouling issues in a late development phase close to series production. Long-chained hydrocarbons in the exhaust gas essentially impact the fouling layer formation. Therefore, a simulation model requires reliable input data especially regarding mass flow of long-chained hydrocarbons transported into the cooler. There is a huge number of different hydrocarbon species in the exhaust gas, but their individual concentration typically is very low, close to the detection limit of standard in-situ measurement equipment like GC-MS.
Technical Paper

Cool System, Lasting Power - an Outstanding E-Powertrain Meets MX Dirt Track

2024-04-09
2024-01-2165
The powertrain electrification is currently not only taking place in public road mobility vehicles, but is also making its way to the racetrack, where it’s driving innovation for developments that will later be used in series production vehicles. The current development focus for electric vehicles is the balance between driving power, range and weight, which is given even greater weighting in racing. To redefine the current limits, IAV developed a complete e-powertrain for a racing MX motorcycle and integrated it into a real drivable demonstrator bike. The unique selling point is the innovative direct phase-change cooling (PCC) of the three-phase e-motor and its power electronics, which enables significantly increased continuous power (Pe = 40 kW from 7,000 rpm to 9,000 rpm) without thermal power reduction. The drive unit is powered by a replaceable Lithium-Ion round cell battery (Ubat,max = 370V) with an energy storage capacity of Ebat = 5 kWh.
X