Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Electronically Controlled Mechanical Automatic Transmission for Heavy Duty Trucks and Buses

1986-10-20
861050
Hino Motors had developed an electronically controlled mechanical automatic transmission and employed it for the ′85 models of large size buses, and also ′86 models of heavy/ medium duty trucks. This system gives minimum fuel consumption and even smoother/easier driving than an automatic transmission with torque converter, by controlling an engine also with a transmission and employing an oil spray clutch. The trade name of this system is EE-Drive which means easy and economy drive.
Technical Paper

Electro-Hydraulic Feedforward Control Power Steering System for Trucks and Buses

1989-11-01
892519
Vehicle responsiveness to the driver's steering maneuvers and external turbulences caused by irregularities in the road surface and wind gusts are two opposing factors to be studied for better stability and controllability of vehicles. The cruising speeds of vehicles on freeways have been becoming higher, and wider physiological differences in the driving ability of drivers are appearing with the increase in elderly drivers. Therefore, to meet the requirements of higher cruising speeds and the expanding physiological differences between drivers, an electro-hydraulic feedforward control power steering system has been developed for trucks and buses. This is a parallel operating system consisting of a mechanical route and an electronic route, and improves vehicle responsiveness so as to absorb the physiological differences of drivers.
Technical Paper

Development of “Camion” Truck Winner at '97 Dakar Rally

1998-11-16
983065
In the '97 Dakar Rally, Hino FT model, 8,000cc engine truck, won 1st, 2nd and 3rd places by defeating upper class trucks having engine of 19,000cc. The average speed of the '97 Hino model was increased more than 15 km/h over the '96 model by improving the riding comfort and handling stability. Larger diameter tires, and softer parabolic leaf springs with long and inclined axle-locus for reducing road impact, gas charged dampers, suspension rods which control compliance-steer-motion and wind-up motion of unsprung masses were adopted for the '97 model.
Technical Paper

Control of Steering Effort and Response for Power Steering of Commercial Vehicles

1985-11-11
852250
The sensitivity of steering increases as the vehicle speed rises. It requires a driver to make different steering maneuvers at high speed zone from that at low speed zone. In order to reduce the difference and to have a better steering “feel” for the driver, the characteristics of steering should be studied from both “the vehicle lateral movement corresponding to steering effort” and “the time lag of the vehicle lateral movement to steering effort”. And both should be decreased as vehicle speed rises. This paper explains how the above conclusion was reached through the development of engine/vehicle speed sensing power steering for commercial vehicles.
Technical Paper

Advantages in EE-Driwe 2nd Stage, Automated Mechanical Transmission for Commercial Vehicles

1987-11-01
872252
The 1st stage of automated mechanical transmission (AMT) was initiated in 1985 by Hino's development of EE-Drive, featuring a pneumatically-stroke-controlled, oil-sprayed coil spring type clutch.[1] [2]* This system made its way into city buses, thus expanding the market for automatic transmission (AT) in Japan. This paper introduces EE-Drive 2nd stage, to be installed mainly on medium-duty trucks, and featuring a hydraulic-pressure-controlled, oil-sprayed clutch. This system is characterized by smooth starting through controlling the pressure of the clutch disk directly. It also features quick shifting, because it allows gears to be shifted with no clutch stroke, but rather through decreasing the pressure. This will prove competitive with AT with a torque converter (HAT) which will appear in the 1990's as a sophisticated electronically controlled AT (ECT).
X