Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

2007-07-23
2007-01-2030
From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

2013-04-08
2013-01-0881
The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2011-11-04
In the pursuit of a sustainable transportation systems, Toyota is considering a comprehensive approach pursuing multiple advanced technologies to address three primary issues: GHG, Petroleum Use, and Air Quality. Vehicles must be ready for and affordable to the mass market to provide the customer choices to meet their transportation needs whether it is EV's, Hybrids, Plug-In Hybrids or Fuel Cell Hydrogen Hybrids. Our studies have shown that EVs have the potential to provide significant improvements in energy utilization especially combined with other advanced technologies. Toyota believes that a combination of these technolgies will provide complementary solution that enables a sustainable transportation system. Presenter Takehito Yokoo, Toyota Motor Corporation
Technical Paper

Three-Dimension Deposited Soot Distribution Measurement in Silicon Carbide Diesel Particulate Filters by Dynamic Neutron Radiography

2011-04-12
2011-01-0599
Exhaust emissions are well known to have adverse impacts on human health. Studies have demonstrated that there is an association between ambient particulate matter (PM) levels and various harmful cardiopulmonary conditions. Soot exhaust from diesel engines can be a significant contributor to airborne pollutants. A key component in PM level control for a diesel engine is a diesel particulate filter (DPF). This device traps soot while allowing other exhaust gases to pass unhindered. However, the performance of diesel particulate filters can change with increasing soot loadings and thus may require regeneration or replacement. Improved understanding of diesel particulate filters is dependent upon the knowledge of the actual soot loading and the soot distribution within the DPF. Neutron radiography (NR) has been identified as an effective means of non-destructively identifying hydrogen or carbon adsorbed in PM.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle

1999-03-01
1999-01-0471
To reduce emissions from diesel engines, the effects of oxidation catalysts on the emissions reductions were studied. The effectiveness of several oxidation catalysts on both the regulated and unregulated emissions was evaluated. The oxidation activity of the catalysts was varied by changing Pt loading. The regulated emissions include particulate (PM), hydrocarbon (HC), and carbon monoxide (CO), and the unregulated emissions include benzene, formaldehyde, acetaldehyde, and benzo[a]pyrene (B[a]P). An 8 litter, turbocharged and aftercooled diesel engine was operated under the Japan Diesel 13 (D13) mode cycle for the evaluations. As the first step, evaluations were conducted with a commercially available JIS #2 diesel fuel (0.046 wt% sulfur). All the regulated and unregulated emissions except PM were reduced as the Pt loading (i.e. oxidation activity) increased. However, PM emissions were increased by the generation of sulfate when the Pt loading exceeded 0.2 g/l.
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

2009-06-15
2009-01-1903
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

The Hino E13C: A Heavy-Duty Diesel Engine Developed for Extremely Low Emissions and Superior Fuel Economy

2004-03-08
2004-01-1312
The Hino E13C was developed for heavy-duty truck application to meet Japan's 2003 NOx and 2005 particulate emissions standards simultaneously with significant fuel economy improvement. A combined EGR system consisting of an external EGR system with a highly efficient EGR cooler and an internal EGR system with an electronically controlled valve actuation device was newly developed to reduce NOx emissions for all operating conditions without requiring a larger engine coolant radiator. A Hino-developed DPR was installed to achieve extremely low particulate emissions at the tail pipe. Increased strength of engine structural components and a ductile cast iron piston enabled high BMEP operation at lower engine speeds and reductions of both engine size and weight. This paper describes key technologies developed for the E13C as well as the development results.
Technical Paper

The Effect of Ethanol Fuel on a Spark Ignition Engine

2006-10-16
2006-01-3380
Since ethanol is a renewable source of energy and it contributes to lower CO2 emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed and has a disadvantage of difficult startability at low temperature. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency, and emissions. The combustion characteristics under cold engine conditions are also examined. Ethanol has high anti-knock quality due to its high octane number, and high latent heat of evaporation, which decreases the compressed gas temperature during the compression stroke. In addition to the effect of latent heat of evaporation, the difference of combustion products compared with gasoline further decreases combustion temperature, thereby reducing cooling heat loss.
X